![]() |
SG++-Doxygen-Documentation
|
Abstract class for providing functionality for accomplishment of learning with cross-validation by generating a set of training data/validation data pairs. More...
Public Member Functions | |
__init__ (self, dataset, level=1) | |
Constructor. | |
__iter__ (self) | |
Implementation of iterator method iter() iterates through subsets. | |
__next__ (self) | |
Implementation of iterator method next() | |
createFoldsets (self, dataContainer, validationIndeces) | |
Create fold new data set Brings points given by validationIndeces together as test subset and the rest of points as train subset. | |
Public Attributes | |
dataFold | |
List of partitioned data sets. | |
dataset | |
Dataset. | |
level | |
Folding level. | |
seq | |
Sequence of indices of points from data set. | |
size | |
Size of dataset. | |
window | |
Number of points in one subset. | |
Abstract class for providing functionality for accomplishment of learning with cross-validation by generating a set of training data/validation data pairs.
python.learner.folding.FoldingPolicy.FoldingPolicy.__init__ | ( | self, | |
dataset, | |||
level = 1 |
|||
) |
Constructor.
dataset | DataContainer with data set |
level | Integer folding level, default value: 1 |
python.learner.folding.FoldingPolicy.FoldingPolicy.__iter__ | ( | self | ) |
Implementation of iterator method iter() iterates through subsets.
python.learner.folding.FoldingPolicy.FoldingPolicy.__next__ | ( | self | ) |
Implementation of iterator method next()
References python.learner.folding.FoldingPolicy.FoldingPolicy.dataFold, sgpp::base::HashGridPoint.level, sgpp::combigrid::FullGrid.level, sgpp::combigrid::OperationPoleHierarchisationGeneral::HierarchisationGeneralSLE.level, python.learner.folding.FilesFoldingPolicy.FilesFoldingPolicy.level, python.learner.folding.FoldingPolicy.FoldingPolicy.level, python.learner.folding.RandomFoldingPolicy.RandomFoldingPolicy.level, python.learner.folding.SequentialFoldingPolicy.SequentialFoldingPolicy.level, python.learner.folding.StratifiedFoldingPolicy.StratifiedFoldingPolicy.level, python.uq.estimators.MarginalIntegralStrategy.MarginalIntegralStrategy.level, python.uq.learner.builder.GridDescriptor.GridDescriptor.level, python.uq.learner.builder.RegressorSpecificationDescriptor.FoldingDescriptor.level, python.uq.learner.SimulationLearner.SimulationLearner.level, python.uq.manager.ASGCStatistics.ASGCStatistics.level, python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.level, sgpp::datadriven::AlgorithmAdaBoostBase.level, sgpp::datadriven::CombiScheme.level, sgpp::datadriven::LevelIndexPair.level, sgpp::datadriven::OperationMultiEvalModMaskStreaming.level, sgpp::datadriven::OperationMultiEvalStreamingBSplineOCL< T >.level, sgpp::datadriven::OperationMultiEvalStreamingModOCLFastMultiPlatform< T >.level, sgpp::datadriven::OperationMultiEvalStreamingModOCLMaskMultiPlatform< T >.level, sgpp::datadriven::OperationMultiEvalStreamingModOCLUnified< T >.level, sgpp::datadriven::StreamingOCLMultiPlatform::OperationMultiEvalStreamingOCLMultiPlatform< T >.level, sgpp::datadriven::SubspaceNodeCombined.level, and sgpp::datadriven::SubspaceNodeSimple.level.
python.learner.folding.FoldingPolicy.FoldingPolicy.createFoldsets | ( | self, | |
dataContainer, | |||
validationIndeces | |||
) |
Create fold new data set Brings points given by validationIndeces together as test subset and the rest of points as train subset.
dataContainer | DataContainer with points |
validationIndeces | list of indices for validation subset |
References sgpp::base::AbstractRefinement_refinement_key.seq, sgpp::base::HashGridIterator.seq(), python.learner.folding.FoldingPolicy.FoldingPolicy.seq, python.learner.folding.RandomFoldingPolicy.RandomFoldingPolicy.seq, python.learner.folding.SequentialFoldingPolicy.SequentialFoldingPolicy.seq, and python.learner.folding.StratifiedFoldingPolicy.StratifiedFoldingPolicy.seq.
python.learner.folding.FoldingPolicy.FoldingPolicy.dataFold |
List of partitioned data sets.
Referenced by python.learner.folding.FoldingPolicy.FoldingPolicy.__next__().
python.learner.folding.FoldingPolicy.FoldingPolicy.dataset |
Dataset.
python.learner.folding.FoldingPolicy.FoldingPolicy.level |
Folding level.
Referenced by python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.__eq__(), python.learner.folding.FoldingPolicy.FoldingPolicy.__next__(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.contains(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.containsDimx(), python.uq.learner.builder.GridDescriptor.GridDescriptor.createGrid(), python.uq.estimators.MarginalIntegralStrategy.MarginalIntegralStrategy.estimate(), python.uq.learner.builder.GridDescriptor.GridDescriptor.fromGrid(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.getLevelIndex(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.getMaxLevel(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.overlap(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.overlapDimx(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid.transformToReferenceGrid(), python.uq.manager.ASGCStatistics.ASGCStatistics.updateResults(), python.uq.learner.builder.GridDescriptor.GridDescriptor.withLevel(), and python.uq.learner.builder.RegressorSpecificationDescriptor.FoldingDescriptor.withLevel().
python.learner.folding.FoldingPolicy.FoldingPolicy.seq |
Sequence of indices of points from data set.
Referenced by python.learner.folding.FoldingPolicy.FoldingPolicy.createFoldsets().
python.learner.folding.FoldingPolicy.FoldingPolicy.size |
Size of dataset.
Referenced by python.data.DataContainer.DataContainer.__init__(), python.data.DataContainer.DataContainer.__next__(), and python.data.DataContainer.DataContainer.getSize().
python.learner.folding.FoldingPolicy.FoldingPolicy.window |
Number of points in one subset.