![]() |
SG++-Doxygen-Documentation
|
Public Member Functions | |
__init__ (self) | |
mean (self, grid, alpha, U, T, dd) | |
Public Attributes | |
linearForm | |
python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.__init__ | ( | self | ) |
References python.controller.InfoToScreenRegressor.InfoToScreenRegressor.__class__, python.uq.estimators.AnalyticEstimationStrategy.AnalyticEstimationStrategy.__class__, python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.__class__, python.uq.estimators.MarginalIntegralStrategy.MarginalIntegralStrategy.__class__, python.uq.learner.builder.SimulationLearnerBuilder.SimulationLearnerBuilder.__class__, python.uq.learner.Regressor.Regressor.__class__, python.uq.learner.SimulationLearnerSpecification.SimulationLearnerSpecification.__class__, python.uq.quadrature.bilinearform.DiscreteBilinearScipyQuadratureStrategy.DiscreteBilinearScipyQuadratureStrategy.__class__, python.uq.quadrature.bilinearform.PiecewiseConstantQuadratureStrategy.PiecewiseConstantQuadratureStrategy.__class__, python.uq.quadrature.bilinearform.SparseGridQuadratureStrategy.SparseGridQuadratureStrategy.__class__, python.uq.quadrature.bilinearform.UniformQuadratureStrategy.UniformQuadratureStrategy.__class__, python.uq.refinement.RefinementStrategy.AnchoredWeightedL2OptRanking.__class__, python.uq.refinement.RefinementStrategy.WeightedL2OptRanking.__class__, python.uq.refinement.RefinementStrategy.AnchoredExpectationValueOptRanking.__class__, python.uq.refinement.RefinementStrategy.ExpectationValueOptRanking.__class__, python.uq.refinement.RefinementStrategy.VarianceOptRanking.__class__, python.uq.refinement.RefinementStrategy.AnchoredVarianceOptRanking.__class__, python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking.__class__, python.uq.refinement.RefinementStrategy.AnchoredMeanSquaredOptRanking.__class__, python.uq.refinement.RefinementStrategy.SquaredSurplusBFRanking.__class__, python.uq.refinement.RefinementStrategy.WeightedL2BFRanking.__class__, python.uq.refinement.RefinementStrategy.VarianceBFRanking.__class__, python.uq.refinement.RefinementStrategy.ExpectationValueBFRanking.__class__, python.uq.refinement.RefinementStrategy.LinearSurplusEstimationRanking.__class__, python.uq.refinement.RefinementStrategy.PredictiveRanking.__class__, python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__class__, python.uq.sampler.MCSampler.MCSampler.__class__, and python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.__init__().
Referenced by python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.__init__().
python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.mean | ( | self, | |
grid, | |||
alpha, | |||
U, | |||
T, | |||
dd | |||
) |
Extraction of the expectation the given sparse grid function interpolating the product of function value and pdf. \int\limits_{[0, 1]^d} f_N(x) * pdf(x) dx @param grid: Grid @param alpha: DataVector coefficients @param U: J joint pdf @param T: Transformation, joint transformation @param dd: dimensions over which to be integrated @return: expectation value
References python.uq.estimators.SparseGridEstimationStrategy.SparseGridEstimationStrategy._extractPDFforMomentEstimation(), python.uq.estimators.AnalyticEstimationStrategy.AnalyticEstimationStrategy.linearForm, and python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.linearForm.
Referenced by python.uq.analysis.asgc.ASGCAnalysis.ASGCAnalysis.computeMoments(), python.uq.analysis.mc.MCAnalysis.MCAnalysis.computeMoments(), python.uq.dists.LibAGFDist.LibAGFDist.var(), and python.uq.dists.SGDEdist.SGDEdist.var().
python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.linearForm |
Referenced by python.uq.estimators.AnalyticEstimationStrategy.AnalyticEstimationStrategy.computeSystemMatrixForMeanProjected(), python.uq.estimators.AnalyticEstimationStrategy.AnalyticEstimationStrategy.initQuadratureStrategy(), and python.uq.estimators.MarginalAnalyticEstimationStrategy.MarginalAnalyticEstimationStrategy.mean().