![]() |
SG++-Doxygen-Documentation
|
Abstract operation for evaluating a partial derivative of a linear combination of basis functions. More...
#include <OperationEvalPartialDerivative.hpp>
Public Member Functions | |
virtual void | evalPartialDerivative (const DataMatrix &alpha, const DataVector &point, size_t derivDim, DataVector &value, DataVector &partialDerivative) |
virtual double | evalPartialDerivative (const DataVector &alpha, const DataVector &point, size_t derivDim, double &partialDerivative)=0 |
OperationEvalPartialDerivative () | |
Constructor. | |
virtual | ~OperationEvalPartialDerivative () |
Destructor. | |
Public Attributes | |
DataVector | pointInUnitCube |
untransformed evaluation point (temporary vector) | |
Abstract operation for evaluating a partial derivative of a linear combination of basis functions.
The "naive" is indicating that classes implementing this operation should use a "naive" approach, e.g. by evaluating all basis functions by brute force.
|
inline |
Constructor.
|
inlinevirtual |
Destructor.
|
inlinevirtual |
alpha | coefficient matrix (each column is a coefficient vector) | |
point | evaluation point | |
derivDim | dimension in which the partial derivative should be taken (0, ..., d-1) | |
[out] | value | values of the linear combination |
[out] | partialDerivative | values of the partial derivatives of the linear combination (the j-th entry corresponds to the j-th column of alpha) |
Reimplemented in sgpp::base::OperationEvalPartialDerivativeBsplineBoundaryNaive, sgpp::base::OperationEvalPartialDerivativeBsplineClenshawCurtisNaive, sgpp::base::OperationEvalPartialDerivativeBsplineNaive, sgpp::base::OperationEvalPartialDerivativeFundamentalNakSplineNaive, sgpp::base::OperationEvalPartialDerivativeFundamentalSplineNaive, sgpp::base::OperationEvalPartialDerivativeModBsplineClenshawCurtisNaive, sgpp::base::OperationEvalPartialDerivativeModBsplineNaive, sgpp::base::OperationEvalPartialDerivativeModFundamentalSplineNaive, sgpp::base::OperationEvalPartialDerivativeModNakBsplineNaive, sgpp::base::OperationEvalPartialDerivativeModWaveletNaive, sgpp::base::OperationEvalPartialDerivativeModWeaklyFundamentalNakSplineNaive, sgpp::base::OperationEvalPartialDerivativeNakBsplineBoundaryNaive, sgpp::base::OperationEvalPartialDerivativeWaveletBoundaryNaive, sgpp::base::OperationEvalPartialDerivativeWaveletNaive, sgpp::base::OperationEvalPartialDerivativeWeaklyFundamentalNakSplineBoundaryNaive, and sgpp::base::OperationEvalPartialDerivativeWeaklyFundamentalSplineBoundaryNaive.
References alpha, evalPartialDerivative(), and m.
|
pure virtual |
alpha | coefficient vector | |
point | evaluation point | |
derivDim | dimension in which the partial derivative should be taken (0, ..., d-1) | |
[out] | partialDerivative | value of the partial derivative of the linear combination |
Implemented in sgpp::base::OperationEvalPartialDerivativeBsplineBoundaryNaive, sgpp::base::OperationEvalPartialDerivativeBsplineClenshawCurtisNaive, sgpp::base::OperationEvalPartialDerivativeBsplineNaive, sgpp::base::OperationEvalPartialDerivativeFundamentalNakSplineNaive, sgpp::base::OperationEvalPartialDerivativeFundamentalSplineNaive, sgpp::base::OperationEvalPartialDerivativeModBsplineClenshawCurtisNaive, sgpp::base::OperationEvalPartialDerivativeModBsplineNaive, sgpp::base::OperationEvalPartialDerivativeModFundamentalSplineNaive, sgpp::base::OperationEvalPartialDerivativeModNakBsplineNaive, sgpp::base::OperationEvalPartialDerivativeModWaveletNaive, sgpp::base::OperationEvalPartialDerivativeModWeaklyFundamentalNakSplineNaive, sgpp::base::OperationEvalPartialDerivativeNakBsplineBoundaryNaive, sgpp::base::OperationEvalPartialDerivativeWaveletBoundaryNaive, sgpp::base::OperationEvalPartialDerivativeWaveletNaive, sgpp::base::OperationEvalPartialDerivativeWeaklyFundamentalNakSplineBoundaryNaive, and sgpp::base::OperationEvalPartialDerivativeWeaklyFundamentalSplineBoundaryNaive.
Referenced by evalPartialDerivative().
DataVector sgpp::base::OperationEvalPartialDerivative::pointInUnitCube |
untransformed evaluation point (temporary vector)