![]() |
SG++-Doxygen-Documentation
|
#include <ScaledScalarFunctionHessian.hpp>
Public Member Functions | |
void | clone (std::unique_ptr< ScalarFunctionHessian > &clone) const override |
Pure virtual method for cloning the Hessian. | |
double | eval (const DataVector &x, DataVector &gradient, DataMatrix &hessian) override |
Pure virtual method for calculating \(f(\vec{x})\) together with \(\nabla f(\vec{x})\) and \(H_f(\vec{x}) \in \mathbb{R}^{d \times d}\). | |
const DataVector & | getLowerBounds () const |
const DataVector & | getUpperBounds () const |
double | getValueFactor (double valueFactor) const |
ScaledScalarFunctionHessian (const ScalarFunctionHessian &fHessianOrig) | |
ScaledScalarFunctionHessian (const ScalarFunctionHessian &fHessianOrig, const DataVector &lowerBounds, const DataVector &upperBounds, double valueFactor) | |
void | setLowerBounds (const DataVector &lowerBounds) |
void | setUpperBounds (const DataVector &upperBounds) |
void | setValueFactor (double valueFactor) |
~ScaledScalarFunctionHessian () override | |
![]() | |
void | eval (const DataMatrix &x, DataVector &value, DataMatrix &gradient, std::vector< DataMatrix > &hessian) |
Convenience method for calculating \(f(\vec{x})\) together with \(\nabla f(\vec{x})\) and \(H_f(\vec{x}) \in \mathbb{R}^{d \times d}\) for multiple \(\vec{x}\). | |
size_t | getNumberOfParameters () const |
ScalarFunctionHessian (size_t d) | |
Constructor. | |
virtual | ~ScalarFunctionHessian () |
Destructor. | |
Protected Attributes | |
std::unique_ptr< ScalarFunctionHessian > | fHessianOrig |
DataVector | lowerBounds |
DataVector | upperBounds |
double | valueFactor |
DataVector | xScaled |
![]() | |
size_t | d |
dimension of the domain | |
|
inlineexplicit |
|
inline |
References fHessianOrig.
|
inlineoverride |
|
inlineoverridevirtual |
Pure virtual method for cloning the Hessian.
It should generate a pointer to the cloned object and it's used for parallel computations (the eval() method might not be thread-safe).
[out] | clone | pointer to cloned object |
Implements sgpp::base::ScalarFunctionHessian.
References clone(), fHessianOrig, lowerBounds, upperBounds, and valueFactor.
Referenced by clone().
|
inlineoverridevirtual |
Pure virtual method for calculating \(f(\vec{x})\) together with \(\nabla f(\vec{x})\) and \(H_f(\vec{x}) \in \mathbb{R}^{d \times d}\).
x | evaluation point \(\vec{x} \in [0, 1]^d\) | |
[out] | gradient | gradient \(\nabla f(\vec{x}) \in \mathbb{R}^d\) |
[out] | hessian | Hessian matrix \(H_f(\vec{x}) \in \mathbb{R}^{d \times d}\) |
Implements sgpp::base::ScalarFunctionHessian.
References sgpp::base::ScalarFunctionHessian::d, fHessianOrig, lowerBounds, upperBounds, valueFactor, and xScaled.
Referenced by python.uq.analysis.asgc.ASGCAnalysis.ASGCAnalysis::estimateDensity().
|
inline |
References lowerBounds.
|
inline |
References upperBounds.
|
inline |
References valueFactor.
|
inline |
References lowerBounds.
Referenced by sgpp::optimization::FuzzyExtensionPrincipleViaOptimization::optimizeForSingleAlphaLevel().
|
inline |
References upperBounds.
Referenced by sgpp::optimization::FuzzyExtensionPrincipleViaOptimization::optimizeForSingleAlphaLevel().
|
inline |
References valueFactor.
Referenced by sgpp::optimization::FuzzyExtensionPrincipleViaOptimization::optimizeForSingleAlphaLevel().
|
protected |
Referenced by clone(), eval(), and ScaledScalarFunctionHessian().
|
protected |
Referenced by clone(), eval(), getLowerBounds(), and setLowerBounds().
|
protected |
Referenced by clone(), eval(), getUpperBounds(), and setUpperBounds().
|
protected |
Referenced by clone(), eval(), getValueFactor(), and setValueFactor().
|
protected |
Referenced by eval().