Fuzzy interval by piecewise linear interpolation of sample points \((x_i, \alpha_i)\) of the membership function \(\mu_{\tilde{x}}\), i.e., \(\mu_{\tilde{x}}(x_i) = \alpha_i\) ( \(i = 1, \dotsc, n\)).
More...
|
double | evaluateMembershipFunction (double x) const override |
| Evaluate the membership function.
|
|
const base::DataVector & | getAlphaData () const |
|
const base::DataVector & | getXData () const |
|
| InterpolatedFuzzyInterval (const base::DataVector &xData, const base::DataVector &alphaData) |
| Constructor.
|
|
| InterpolatedFuzzyInterval (const InterpolatedFuzzyInterval &other) |
| Copy constructor.
|
|
| ~InterpolatedFuzzyInterval () override |
| Destructor.
|
|
double | evaluateConfidenceIntervalLowerBound (double alpha) const override |
| Evaluate the lower bound of a confidence interval, which is always a closed interval \((\tilde{x})_\alpha = [a, b]\).
|
|
double | evaluateConfidenceIntervalUpperBound (double alpha) const override |
| Evaluate the upper bound of a confidence interval, which is always a closed interval \((\tilde{x})_\alpha = [a, b]\).
|
|
| FuzzyIntervalViaMembershipFunction (const FuzzyIntervalViaMembershipFunction &other) |
| Copy constructor.
|
|
| FuzzyIntervalViaMembershipFunction (double supportLowerBound, double supportUpperBound, double coreLowerBound, double coreUpperBound, size_t numberOfIntegralSamples=DEFAULT_NUMBER_OF_INTEGRAL_SAMPLES, double binarySearchTolerance=DEFAULT_BINARY_SEARCH_TOLERANCE) |
| Constructor.
|
|
double | getBinarySearchTolerance () const |
|
double | getCoreLowerBound () const |
|
double | getCoreUpperBound () const |
|
void | setBinarySearchTolerance (double binarySearchTolerance) |
|
| ~FuzzyIntervalViaMembershipFunction () override |
| Destructor.
|
|
double | computeL1Error (const FuzzyInterval &other, NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute absolute L1 error to other fuzzy interval.
|
|
double | computeL1Norm (NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute L1 norm of fuzzy interval.
|
|
double | computeL2Error (const FuzzyInterval &other, NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute absolute L2 error to other fuzzy interval.
|
|
double | computeL2Norm (NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute L2 norm of fuzzy interval.
|
|
double | computeLinfError (const FuzzyInterval &other, NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute absolute Linf error to other fuzzy interval.
|
|
double | computeLinfNorm (NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute Linf norm of fuzzy interval.
|
|
double | computeRelativeL1Error (const FuzzyInterval &other, NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute relative L1 error to other fuzzy interval.
|
|
double | computeRelativeL2Error (const FuzzyInterval &other, NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute relative L2 error to other fuzzy interval.
|
|
double | computeRelativeLinfError (const FuzzyInterval &other, NormMode normMode=NormMode::ViaMembershipFunction) const |
| Compute relative Linf error to other fuzzy interval.
|
|
| FuzzyInterval (const FuzzyInterval &other) |
| Copy constructor.
|
|
| FuzzyInterval (double supportLowerBound, double supportUpperBound, size_t numberOfIntegralSamples=DEFAULT_NUMBER_OF_INTEGRAL_SAMPLES) |
| Constructor.
|
|
size_t | getNumberOfIntegralSamples () const |
|
double | getSupportLowerBound () const |
|
double | getSupportUpperBound () const |
|
void | setNumberOfIntegralSamples (size_t numberOfIntegralSamples) |
|
virtual | ~FuzzyInterval () |
| Destructor.
|
|
Fuzzy interval by piecewise linear interpolation of sample points \((x_i, \alpha_i)\) of the membership function \(\mu_{\tilde{x}}\), i.e., \(\mu_{\tilde{x}}(x_i) = \alpha_i\) ( \(i = 1, \dotsc, n\)).
The data must fulfill the following:
- \(x_i < x_{i+1}\) for \(i = 1, \dotsc, n-1\)
- \(\alpha_1 = 0 = \alpha_n\)
- There are some \(1 < j \le k < n\) such that:
- \(\alpha_i = 1\) for \(i = j, \dotsc, k\)
- \(\alpha_i < \alpha_{i+1}\) for \(i = 1, \dotsc, j-1\)
- \(\alpha_i > \alpha_{i+1}\) for \(i = k, \dotsc, n-1\)