![]() |
SG++-Doxygen-Documentation
|
Meta optimization algorithm calling local algorithm multiple times. More...
#include <MultiStart.hpp>
Static Public Attributes | |
static const size_t | DEFAULT_MAX_FCN_EVAL_COUNT = 1000 |
default maximal number of function evaluations | |
![]() | |
static const size_t | DEFAULT_N = 1000 |
default maximal number of iterations or function evaluations | |
Protected Member Functions | |
void | initialize (size_t populationSize) |
Initializes populationSize. | |
Protected Attributes | |
NelderMead | defaultOptimizer |
default optimization algorithm | |
std::vector< size_t > | kHist |
search history (inner iterations) | |
std::unique_ptr< UnconstrainedOptimizer > | optimizer |
optimization algorithm | |
size_t | populationSize |
number of individual points | |
![]() | |
std::unique_ptr< base::ScalarFunction > | f |
objective function | |
std::unique_ptr< base::ScalarFunctionGradient > | fGradient |
objective function gradient | |
std::unique_ptr< base::ScalarFunctionHessian > | fHessian |
objective function Hessian | |
base::DataVector | fHist |
search history vector (optimal values) | |
double | fOpt |
result of optimization (optimal function value) | |
size_t | N |
maximal number of iterations or function evaluations | |
base::DataVector | x0 |
starting point | |
base::DataMatrix | xHist |
search history matrix (optimal points) | |
base::DataVector | xOpt |
result of optimization (location of optimum) | |
Meta optimization algorithm calling local algorithm multiple times.
MultiStart generates a random population of a given number of starting points, and then runs a local optimization algorithm for each of the starting point. The best point wins.
sgpp::optimization::optimizer::MultiStart::MultiStart | ( | const base::ScalarFunction & | f, |
size_t | maxFcnEvalCount = DEFAULT_MAX_FCN_EVAL_COUNT , |
||
size_t | populationSize = 0 |
||
) |
Constructor.
By default, Nelder-Mead is used as optimization algorithm.
f | objective function |
maxFcnEvalCount | maximal number of function evaluations |
populationSize | number of individual points (default: \(\min(10d, 100)\)) |
References sgpp::optimization::optimizer::NelderMead::clone(), defaultOptimizer, initialize(), optimizer, and populationSize.
sgpp::optimization::optimizer::MultiStart::MultiStart | ( | const UnconstrainedOptimizer & | optimizer, |
size_t | maxFcnEvalCount = DEFAULT_MAX_FCN_EVAL_COUNT , |
||
size_t | populationSize = 0 |
||
) |
Constructor with custom optimization algorithm.
The current values of the optimizer's N and starting point properties will not be used.
optimizer | optimization algorithm and objective function |
maxFcnEvalCount | maximal number of function evaluations |
populationSize | number of individual points (default: \(\min(10d, 100)\)) |
References sgpp::optimization::optimizer::UnconstrainedOptimizer::clone(), initialize(), optimizer, and populationSize.
sgpp::optimization::optimizer::MultiStart::MultiStart | ( | const MultiStart & | other | ) |
Copy constructor.
other | optimizer to be copied |
References initialize(), optimizer, and populationSize.
|
override |
Destructor.
|
overridevirtual |
[out] | clone | pointer to cloned object |
Implements sgpp::optimization::optimizer::UnconstrainedOptimizer.
References clone().
Referenced by clone(), and sgpp::optimization::FuzzyExtensionPrincipleViaOptimization::FuzzyExtensionPrincipleViaOptimization().
const std::vector< size_t > & sgpp::optimization::optimizer::MultiStart::getHistoryOfInnerIterations | ( | ) | const |
References kHist.
size_t sgpp::optimization::optimizer::MultiStart::getPopulationSize | ( | ) | const |
References populationSize.
|
protected |
Initializes populationSize.
populationSize | number of individual points (zero to use default value) |
References sgpp::optimization::optimizer::UnconstrainedOptimizer::f, and populationSize.
Referenced by MultiStart(), MultiStart(), and MultiStart().
|
overridevirtual |
Pure virtual method for optimization of the objective function.
The result of the optimization process can be obtained by member functions, e.g., getOptimalPoint() and getOptimalValue().
Implements sgpp::optimization::optimizer::UnconstrainedOptimizer.
References sgpp::base::DataVector::append(), sgpp::base::DataMatrix::appendRow(), sgpp::optimization::optimizer::UnconstrainedOptimizer::clone(), sgpp::base::Printer::disableStatusPrinting(), sgpp::base::Printer::enableStatusPrinting(), sgpp::optimization::optimizer::UnconstrainedOptimizer::f, sgpp::optimization::optimizer::UnconstrainedOptimizer::fHist, sgpp::optimization::optimizer::UnconstrainedOptimizer::fOpt, sgpp::optimization::optimizer::UnconstrainedOptimizer::getHistoryOfOptimalPoints(), sgpp::base::Printer::getInstance(), sgpp::base::RandomNumberGenerator::getInstance(), sgpp::base::Printer::getMutex(), sgpp::base::DataMatrix::getNrows(), sgpp::optimization::optimizer::UnconstrainedOptimizer::getOptimalPoint(), sgpp::optimization::optimizer::UnconstrainedOptimizer::getOptimalValue(), sgpp::base::RandomNumberGenerator::getUniformRN(), sgpp::base::Printer::isStatusPrintingEnabled(), kHist, sgpp::base::MutexType::lock(), sgpp::optimization::optimizer::UnconstrainedOptimizer::N, sgpp::optimization::optimizer::UnconstrainedOptimizer::optimize(), optimizer, populationSize, sgpp::base::Printer::printStatusBegin(), sgpp::base::Printer::printStatusEnd(), sgpp::base::Printer::printStatusUpdate(), sgpp::base::DataMatrix::resize(), sgpp::optimization::optimizer::UnconstrainedOptimizer::setN(), sgpp::optimization::optimizer::UnconstrainedOptimizer::setStartingPoint(), sgpp::base::MutexType::unlock(), sgpp::optimization::optimizer::UnconstrainedOptimizer::x0, sgpp::optimization::optimizer::UnconstrainedOptimizer::xHist, and sgpp::optimization::optimizer::UnconstrainedOptimizer::xOpt.
Referenced by sgpp::datadriven::BayesianOptimization::fitScales(), and sgpp::datadriven::BayesianOptimization::main().
|
overridevirtual |
f | objective function |
Reimplemented from sgpp::optimization::optimizer::UnconstrainedOptimizer.
References sgpp::optimization::optimizer::UnconstrainedOptimizer::f, optimizer, and sgpp::optimization::optimizer::UnconstrainedOptimizer::setObjectiveFunction().
|
overridevirtual |
fGradient | objective gradient |
Reimplemented from sgpp::optimization::optimizer::UnconstrainedOptimizer.
References sgpp::optimization::optimizer::UnconstrainedOptimizer::fGradient, optimizer, and sgpp::optimization::optimizer::UnconstrainedOptimizer::setObjectiveGradient().
|
overridevirtual |
fHessian | objective Hessian |
Reimplemented from sgpp::optimization::optimizer::UnconstrainedOptimizer.
References sgpp::optimization::optimizer::UnconstrainedOptimizer::fHessian, optimizer, and sgpp::optimization::optimizer::UnconstrainedOptimizer::setObjectiveHessian().
void sgpp::optimization::optimizer::MultiStart::setPopulationSize | ( | size_t | populationSize | ) |
populationSize | number of individual points |
References populationSize.
|
static |
default maximal number of function evaluations
|
protected |
default optimization algorithm
Referenced by MultiStart().
|
protected |
search history (inner iterations)
Referenced by getHistoryOfInnerIterations(), and optimize().
|
protected |
optimization algorithm
Referenced by MultiStart(), MultiStart(), MultiStart(), optimize(), setObjectiveFunction(), setObjectiveGradient(), and setObjectiveHessian().
|
protected |
number of individual points
Referenced by getPopulationSize(), initialize(), MultiStart(), MultiStart(), MultiStart(), optimize(), and setPopulationSize().