SG++-Doxygen-Documentation
Loading...
Searching...
No Matches
python.classifier Namespace Reference

Functions

 assembleTrainingVector (dvecs, cvecs, omit)
 
 buildTrainingVector (data)
 
 buildYVector (data)
 
 callback_deprecated (option, opt, value, parser)
 
 constructGrid (dim)
 
 doApply ()
 
 doEval ()
 
 doEvalStdin ()
 
 doFold ()
 
 doFoldf ()
 
 doFoldr ()
 
 doFolds ()
 
 doFoldStratified ()
 
 doNormal ()
 
 doTest ()
 
 evaluateError (classes, alpha, m)
 Subroutine evaluation of error.
 
 exec_mode (mode)
 
 format_optionlist (l)
 
 formTxt (te_refine, tr_refine, num_refine, withHeader=True)
 returns txt variable for stats
 
 formTxtVal (te_refine, tr_refine, val_refine, num_points, withHeader=True)
 returns txt variable for stats with validation set
 
 getEpochsErrorIncreasing (list)
 returns the number of epochs the error is increasing
 
 getNumOfPoints (options, grid)
 
 openAlphaFile (filename)
 
 openFile (filename)
 
 performFold (dvec, cvec)
 
 performFoldNew (dvec, cvec, ifold)
 
 performFoldRegression (dvec, cvec)
 
 run (grid, training, classes)
 
 testValuesWithCharacteristicNumbers (grid, alpha, test, classes, evalValues)
 
 testVector (grid, alpha, test, classes)
 
 testVectorFast (grid, alpha, test, classes)
 
 testVectorFastMSE (grid, alpha, test, vals)
 
 testVectorFastWithCharacteristicNumbers (grid, alpha, test, classes)
 
 testVectorValues (grid, alpha, test, classes, evalValues)
 

Variables

 action
 
 args
 
 callback
 
 choices
 
 CMode = options.CMode.lower()
 
 default
 
 dest
 
 False
 
 help
 
 metavar
 
dict modes
 
 None
 
 options
 
 parser = OptionParser()
 
 type
 

Function Documentation

◆ assembleTrainingVector()

python.classifier.assembleTrainingVector (   dvecs,
  cvecs,
  omit 
)

◆ buildTrainingVector()

python.classifier.buildTrainingVector (   data)

◆ buildYVector()

◆ callback_deprecated()

python.classifier.callback_deprecated (   option,
  opt,
  value,
  parser 
)

◆ constructGrid()

◆ doApply()

◆ doEval()

◆ doEvalStdin()

python.classifier.doEvalStdin ( )

◆ doFold()

◆ doFoldf()

◆ doFoldr()

◆ doFolds()

◆ doFoldStratified()

python.classifier.doFoldStratified ( )

◆ doNormal()

◆ doTest()

◆ evaluateError()

python.classifier.evaluateError (   classes,
  alpha,
  m 
)

Subroutine evaluation of error.

Todo:
remove printing messages from the subroutine and place it into the suited methods

Referenced by python.classifier.doApply(), python.classifier.doEval(), python.classifier.doTest(), and python.classifier.run().

◆ exec_mode()

python.classifier.exec_mode (   mode)

◆ format_optionlist()

python.classifier.format_optionlist (   l)

◆ formTxt()

python.classifier.formTxt (   te_refine,
  tr_refine,
  num_refine,
  withHeader = True 
)

◆ formTxtVal()

python.classifier.formTxtVal (   te_refine,
  tr_refine,
  val_refine,
  num_points,
  withHeader = True 
)

returns txt variable for stats with validation set

Referenced by python.classifier.performFoldNew().

◆ getEpochsErrorIncreasing()

python.classifier.getEpochsErrorIncreasing (   list)

returns the number of epochs the error is increasing

Parameters
listList with MSE's from different refinement iterations

Referenced by python.classifier.doTest().

◆ getNumOfPoints()

◆ openAlphaFile()

python.classifier.openAlphaFile (   filename)

◆ openFile()

◆ performFold()

◆ performFoldNew()

◆ performFoldRegression()

python.classifier.performFoldRegression (   dvec,
  cvec 
)
Perform n-fold cross-validation.
@param dvec contains n DataMatrices for the single folds;
@param cvec contains n DataVectors with function values for the single folds

References python.classifier.assembleTrainingVector(), python.classifier.constructGrid(), python.classifier.formTxt(), python.classifier.getNumOfPoints(), and python.classifier.testVectorFastMSE().

Referenced by python.classifier.doFold(), python.classifier.doFoldf(), python.classifier.doFoldr(), and python.classifier.doFolds().

◆ run()

python.classifier.run (   grid,
  training,
  classes 
)

◆ testValuesWithCharacteristicNumbers()

python.classifier.testValuesWithCharacteristicNumbers (   grid,
  alpha,
  test,
  classes,
  evalValues 
)

◆ testVector()

python.classifier.testVector (   grid,
  alpha,
  test,
  classes 
)

◆ testVectorFast()

python.classifier.testVectorFast (   grid,
  alpha,
  test,
  classes 
)

◆ testVectorFastMSE()

python.classifier.testVectorFastMSE (   grid,
  alpha,
  test,
  vals 
)

◆ testVectorFastWithCharacteristicNumbers()

python.classifier.testVectorFastWithCharacteristicNumbers (   grid,
  alpha,
  test,
  classes 
)

◆ testVectorValues()

python.classifier.testVectorValues (   grid,
  alpha,
  test,
  classes,
  evalValues 
)

Variable Documentation

◆ action

python.classifier.action

◆ args

python.classifier.args

◆ callback

python.classifier.callback

◆ choices

python.classifier.choices

◆ CMode

python.classifier.CMode = options.CMode.lower()

◆ default

python.classifier.default

◆ dest

python.classifier.dest

◆ False

python.classifier.False

◆ help

python.classifier.help

◆ metavar

python.classifier.metavar

◆ modes

dict python.classifier.modes

◆ None

python.classifier.None

◆ options

python.classifier.options

◆ parser

python.classifier.parser = OptionParser()

◆ type

python.classifier.type