![]() |
SG++-Doxygen-Documentation
|
Functions | |
clean_data (data) | |
leave only the data points with coordinated greater than zero is convinient for some problems, i.e. | |
create_logger () | |
norm (mat) | |
normalization on [0,1] interval | |
remove_outliers (mat, koef, target=None) | |
remove outliers, where the points deviate on more than koef times standard deviation from the mean | |
Variables | |
action | |
args | |
C = cov(interest_data) | |
data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',') | |
default | |
delimiter | |
dest | |
filename = options.file_in | |
help | |
interest_data = data - means | |
interest_data_transformed = dot(invV, interest_data).T | |
invV = inv(V) | |
logger = create_logger() | |
means = mean(data,axis=0) | |
options | |
parser = optparse.OptionParser() | |
target = data[:, options.target_column] | |
type | |
u | |
V | |
python.utils.pca_normalize_dataset.clean_data | ( | data | ) |
leave only the data points with coordinated greater than zero is convinient for some problems, i.e.
photometric redshift
python.utils.pca_normalize_dataset.create_logger | ( | ) |
python.utils.pca_normalize_dataset.norm | ( | mat | ) |
normalization on [0,1] interval
mat | matrix points row-wise |
python.utils.pca_normalize_dataset.remove_outliers | ( | mat, | |
koef, | |||
target = None |
|||
) |
remove outliers, where the points deviate on more than koef times standard deviation from the mean
mat | matrix points row-wise |
koef | koefficient to determine the outliers |
target | list with target values for the points |
python.utils.pca_normalize_dataset.action |
python.utils.pca_normalize_dataset.args |
python.utils.pca_normalize_dataset.C = cov(interest_data) |
python.utils.pca_normalize_dataset.data = genfromtxt(options.csv_dir + filename, skiprows=1, delimiter=',') |
python.utils.pca_normalize_dataset.default |
python.utils.pca_normalize_dataset.delimiter |
python.utils.pca_normalize_dataset.dest |
python.utils.pca_normalize_dataset.filename = options.file_in |
python.utils.pca_normalize_dataset.help |
python.utils.pca_normalize_dataset.interest_data_transformed = dot(invV, interest_data).T |
python.utils.pca_normalize_dataset.invV = inv(V) |
python.utils.pca_normalize_dataset.logger = create_logger() |
python.utils.pca_normalize_dataset.means = mean(data,axis=0) |
python.utils.pca_normalize_dataset.options |
python.utils.pca_normalize_dataset.parser = optparse.OptionParser() |
python.utils.pca_normalize_dataset.target = data[:, options.target_column] |
python.utils.pca_normalize_dataset.type |
python.utils.pca_normalize_dataset.u |
python.utils.pca_normalize_dataset.V |