![]() |
SG++-Doxygen-Documentation
|
structure that can be used by application to define adaptivity strategies More...
#include <Grid.hpp>
Public Attributes | |
CoarseningFunctorType | coarseningFunctorType_ = CoarseningFunctorType::Surplus |
coarsening indicator | |
double | coarseningThreshold_ = 0.0 |
coarsening threshold for surpluses | |
bool | coarsenInitialPoints_ = false |
prevent coarsening of initial grid points, needed for some decompositions | |
bool | errorBasedRefinement_ = false |
other refinement strategy, that is more expensive, but yields better results | |
size_t | errorBufferSize_ = 3 |
amount of error values to consider when checking for convergence in case of error based refinement | |
double | errorConvergenceThreshold_ = 0.001 |
threshold for convergence in case error based refinement is applied | |
size_t | errorMinInterval_ = 0 |
minimum amount of iterations before the next refinement is allowed to happen in case of error based refinement | |
bool | levelPenalize_ = false |
determines if finer grid levels should be penalized when finding points to refine | |
bool | maxLevelType_ = false |
refinement type: false: classic, true: maxLevel | |
size_t | numCoarseningPoints_ = 5 |
max. number of points to be coarsened | |
size_t | numRefinementPoints_ = 5 |
max. number of points to be refined | |
size_t | numRefinements_ = 1 |
number of refinements | |
double | percent_ = 1.0 |
max. percent of points to be refined/coarsened | |
bool | precomputeEvaluations_ = true |
in case of zero corssing based refinement: determines if evaluations should be precomupted | |
RefinementFunctorType | refinementFunctorType_ = RefinementFunctorType::Surplus |
refinement indicator | |
size_t | refinementPeriod_ = 1 |
refinement will be triggered each refinementPeriod instances (approximately) in case of non error based refinement | |
double | refinementThreshold_ = 0.0 |
refinement threshold for surpluses | |
std::vector< double > | scalingCoefficients_ = std::vector<double>() |
in case of data based refinements: determines the scaling coefficients for each class | |
AdaptivityThresholdType | thresholdType_ = AdaptivityThresholdType::Absolute |
threshold type | |
structure that can be used by application to define adaptivity strategies
CoarseningFunctorType sgpp::base::AdaptivityConfiguration::coarseningFunctorType_ = CoarseningFunctorType::Surplus |
coarsening indicator
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::ModelFittingDensityEstimation::getCoarseningFunctor(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
double sgpp::base::AdaptivityConfiguration::coarseningThreshold_ = 0.0 |
coarsening threshold for surpluses
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
bool sgpp::base::AdaptivityConfiguration::coarsenInitialPoints_ = false |
prevent coarsening of initial grid points, needed for some decompositions
Referenced by sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
bool sgpp::base::AdaptivityConfiguration::errorBasedRefinement_ = false |
other refinement strategy, that is more expensive, but yields better results
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
size_t sgpp::base::AdaptivityConfiguration::errorBufferSize_ = 3 |
amount of error values to consider when checking for convergence in case of error based refinement
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
double sgpp::base::AdaptivityConfiguration::errorConvergenceThreshold_ = 0.001 |
threshold for convergence in case error based refinement is applied
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
size_t sgpp::base::AdaptivityConfiguration::errorMinInterval_ = 0 |
minimum amount of iterations before the next refinement is allowed to happen in case of error based refinement
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
bool sgpp::base::AdaptivityConfiguration::levelPenalize_ = false |
determines if finer grid levels should be penalized when finding points to refine
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
bool sgpp::base::AdaptivityConfiguration::maxLevelType_ = false |
refinement type: false: classic, true: maxLevel
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), hpx_main(), main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfiguration::setupDefaults(), sgpp::datadriven::LearnerBase::train(), and sgpp::datadriven::LearnerBaseSP::train().
size_t sgpp::base::AdaptivityConfiguration::numCoarseningPoints_ = 5 |
max. number of points to be coarsened
Referenced by sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
size_t sgpp::base::AdaptivityConfiguration::numRefinementPoints_ = 5 |
max. number of points to be refined
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), doAllRefinements(), doAllRefinements(), doAllRefinements(), doAllRefinements(), sgpp::datadriven::LearnerSGDEOnOffParallel::doRefinementForAll(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), sgpp::datadriven::RefinementHandler::handleSurplusBasedRefinement(), hpx_main(), sgpp::datadriven::LearnerSGDEConfiguration::initConfig(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::initConfig(), sgpp::datadriven::LearnerSGDEConfiguration::LearnerSGDEConfiguration(), main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfiguration::setupDefaults(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::SparseGridDensityEstimatorConfiguration(), sgpp::datadriven::SparseGridDensityEstimator::train(), sgpp::datadriven::LearnerSGDE::train(), sgpp::datadriven::LearnerBase::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerSVM::train(), sgpp::datadriven::LearnerSGD::train(), and sgpp::datadriven::LearnerSGDE::trainOnline().
size_t sgpp::base::AdaptivityConfiguration::numRefinements_ = 1 |
number of refinements
Referenced by sgpp::datadriven::ModelFittingClassification::adapt(), sgpp::datadriven::RefinementHandler::checkRefinementNecessary(), sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::RosenblattTransformation::createSGDELearner(), doAllRefinements(), doAllRefinements(), doAllRefinements(), doAllRefinements(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), hpx_main(), sgpp::datadriven::LearnerSGDEConfiguration::initConfig(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::initConfig(), sgpp::datadriven::LearnerSGDEConfiguration::LearnerSGDEConfiguration(), main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfiguration::setupDefaults(), sgpp::datadriven::SparseGridDensityEstimatorConfiguration::SparseGridDensityEstimatorConfiguration(), sgpp::datadriven::SparseGridDensityEstimator::train(), sgpp::datadriven::LearnerSGDE::train(), sgpp::datadriven::RegressionLearner::train(), sgpp::datadriven::LearnerBase::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerSGD::train(), and sgpp::datadriven::LearnerSGDE::trainOnline().
double sgpp::base::AdaptivityConfiguration::percent_ = 1.0 |
max. percent of points to be refined/coarsened
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), hpx_main(), main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfiguration::setupDefaults(), sgpp::datadriven::LearnerBase::train(), and sgpp::datadriven::LearnerBaseSP::train().
bool sgpp::base::AdaptivityConfiguration::precomputeEvaluations_ = true |
in case of zero corssing based refinement: determines if evaluations should be precomupted
Referenced by sgpp::datadriven::ModelFittingClassification::adapt(), sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
RefinementFunctorType sgpp::base::AdaptivityConfiguration::refinementFunctorType_ = RefinementFunctorType::Surplus |
refinement indicator
Referenced by sgpp::datadriven::ModelFittingClassification::adapt(), sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), sgpp::datadriven::ModelFittingDensityEstimation::getRefinementFunctor(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
size_t sgpp::base::AdaptivityConfiguration::refinementPeriod_ = 1 |
refinement will be triggered each refinementPeriod instances (approximately) in case of non error based refinement
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
double sgpp::base::AdaptivityConfiguration::refinementThreshold_ = 0.0 |
refinement threshold for surpluses
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), doAllRefinements(), doAllRefinements(), doAllRefinements(), doAllRefinements(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::LearnerScenario::getAdaptivityConfiguration(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), hpx_main(), main(), main(), sgpp::datadriven::LearnerScenario::setAdaptivityConfiguration(), sgpp::datadriven::FitterConfiguration::setupDefaults(), sgpp::datadriven::SparseGridDensityEstimator::train(), sgpp::datadriven::LearnerSGDE::train(), sgpp::datadriven::LearnerBase::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerBaseSP::train(), sgpp::datadriven::LearnerSVM::train(), sgpp::datadriven::LearnerSGD::train(), and sgpp::datadriven::LearnerSGDE::trainOnline().
std::vector<double> sgpp::base::AdaptivityConfiguration::scalingCoefficients_ = std::vector<double>() |
in case of data based refinements: determines the scaling coefficients for each class
Referenced by sgpp::datadriven::DBMatObjectStore::ObjectContainer::configMatches(), sgpp::datadriven::DMConfigTools::dumpToStream(), sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig(), and sgpp::datadriven::FitterConfiguration::setupDefaults().
AdaptivityThresholdType sgpp::base::AdaptivityConfiguration::thresholdType_ = AdaptivityThresholdType::Absolute |
threshold type
Referenced by sgpp::datadriven::DMConfigTools::dumpToStream(), and sgpp::datadriven::DataMiningConfigParser::getFitterAdaptivityConfig().