SG++-Doxygen-Documentation
Loading...
Searching...
No Matches
python.learner.TrainingSpecification.TrainingSpecification Class Reference

Collection of parameters, which specify the learning process. More...

Inheritance diagram for python.learner.TrainingSpecification.TrainingSpecification:

Public Member Functions

 fromJson (cls, jsonObject)
 Restores the TrainingSpecification object from the json object with attributes.
 
 getAdaptPoints (self)
 Getter for Number of points to refine.
 
 getAdaptRate (self)
 Getter for Rate of points to refine.
 
 getAdaptThreshold (self)
 Getter for refinement threshold only the points with greater to equal absolute values of the refinement criterion (e.g.
 
 getBOperator (self, name="train")
 Getter for B operator.
 
 getCOperator (self)
 Getter for C operator.
 
 getCOperatorType (self)
 Returns the type of the C operator.
 
 getL (self)
 Getter for Regularization parameter.
 
 getNumOfPointsToRefine (self, refinablePoints)
 Calculates the number of points which should be refined.
 
 setAdaptPoints (self, value)
 Setter for Number of points to refine.
 
 setAdaptRate (self, value)
 Setter for Rate of points to refine.
 
 setAdaptThreshold (self, value)
 Setter for refinement threshold only the points with greater to equal absolute values of the refinement criterion (e.g.
 
 setBOperator (self, value, name="train")
 Setter for B operator.
 
 setCOperator (self, value)
 Setter for C operator.
 
 setCOperatorType (self, value)
 Sets the type of the C operator.
 
 setL (self, value)
 Setter for Regularization parameter.
 
 toString (self)
 Returns a string that represents the object.
 

Detailed Description

Collection of parameters, which specify the learning process.

An object of the class is aggregated by the Learner object.

Member Function Documentation

◆ fromJson()

python.learner.TrainingSpecification.TrainingSpecification.fromJson (   cls,
  jsonObject 
)

Restores the TrainingSpecification object from the json object with attributes.

Parameters
clspython keyword (do not specify)
jsonObjectA json object.
Returns
The restored TrainingSpecification object.

Referenced by python.learner.Learner.Learner.setMemento(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.setMemento(), python.uq.learner.Learner.Learner.setMemento(), python.uq.sampler.asgc.ASGCSampler.ASGCSampler.setMemento(), and python.uq.uq_setting.UQSetting.UQSetting.setMemento().

◆ getAdaptPoints()

python.learner.TrainingSpecification.TrainingSpecification.getAdaptPoints (   self)

Getter for Number of points to refine.

Returns
: integer Number of points to refine

References python.learner.TrainingSpecification.TrainingSpecification.__adaptPoints.

◆ getAdaptRate()

python.learner.TrainingSpecification.TrainingSpecification.getAdaptRate (   self)

Getter for Rate of points to refine.

Returns
: double in [0,1] Rate of points to refine

References python.learner.TrainingSpecification.TrainingSpecification.__adaptRate.

◆ getAdaptThreshold()

python.learner.TrainingSpecification.TrainingSpecification.getAdaptThreshold (   self)

Getter for refinement threshold only the points with greater to equal absolute values of the refinement criterion (e.g.

alpha or error) will be refined

Returns
float threshold

References python.learner.TrainingSpecification.TrainingSpecification.__adaptThreshold.

Referenced by python.uq.learner.Regressor.Regressor.refineGrid().

◆ getBOperator()

python.learner.TrainingSpecification.TrainingSpecification.getBOperator (   self,
  name = "train" 
)

Getter for B operator.

Parameters
nameoperator identifier
Returns
: OperationB

References python.learner.TrainingSpecification.TrainingSpecification.__bOperator.

Referenced by python.uq.learner.Regressor.Regressor.evalError().

◆ getCOperator()

python.learner.TrainingSpecification.TrainingSpecification.getCOperator (   self)

Getter for C operator.

Returns
: OperationMatrix

References python.learner.TrainingSpecification.TrainingSpecification.__cOperator.

◆ getCOperatorType()

python.learner.TrainingSpecification.TrainingSpecification.getCOperatorType (   self)

Returns the type of the C operator.

Returns
: the type of the C operator as a string

References python.learner.TrainingSpecification.TrainingSpecification.__cOperatorType.

◆ getL()

python.learner.TrainingSpecification.TrainingSpecification.getL (   self)

Getter for Regularization parameter.

Returns
: double Regularization parameter

References python.learner.TrainingSpecification.TrainingSpecification.__l, and python.uq.dists.Beta.Beta.__l.

◆ getNumOfPointsToRefine()

python.learner.TrainingSpecification.TrainingSpecification.getNumOfPointsToRefine (   self,
  refinablePoints 
)

Calculates the number of points which should be refined.

Parameters
refinablePointsinteger number of points which can be refined
Returns
: integer number of point which should be refined

References python.learner.TrainingSpecification.TrainingSpecification.__adaptPoints, and python.learner.TrainingSpecification.TrainingSpecification.__adaptRate.

Referenced by python.uq.refinement.RefinementManager.RefinementManager.candidates(), and python.uq.learner.Regressor.Regressor.refineGrid().

◆ setAdaptPoints()

python.learner.TrainingSpecification.TrainingSpecification.setAdaptPoints (   self,
  value 
)

Setter for Number of points to refine.

Parameters
valueinteger Number of points to refine

References python.learner.TrainingSpecification.TrainingSpecification.__adaptPoints.

◆ setAdaptRate()

python.learner.TrainingSpecification.TrainingSpecification.setAdaptRate (   self,
  value 
)

Setter for Rate of points to refine.

Parameters
valuedouble in [0,1] Rate of points to refine

References python.learner.TrainingSpecification.TrainingSpecification.__adaptRate.

◆ setAdaptThreshold()

python.learner.TrainingSpecification.TrainingSpecification.setAdaptThreshold (   self,
  value 
)

Setter for refinement threshold only the points with greater to equal absolute values of the refinement criterion (e.g.

alpha or error) will be refined

Parameters
valuefloat threshold

References python.learner.TrainingSpecification.TrainingSpecification.__adaptThreshold.

◆ setBOperator()

python.learner.TrainingSpecification.TrainingSpecification.setBOperator (   self,
  value,
  name = "train" 
)

Setter for B operator.

Parameters
valueOperationB
nameoperator identifier

References python.learner.TrainingSpecification.TrainingSpecification.__bOperator.

◆ setCOperator()

python.learner.TrainingSpecification.TrainingSpecification.setCOperator (   self,
  value 
)

Setter for C operator.

Parameters
valueOperationMatrix

References python.learner.TrainingSpecification.TrainingSpecification.__cOperator.

◆ setCOperatorType()

python.learner.TrainingSpecification.TrainingSpecification.setCOperatorType (   self,
  value 
)

Sets the type of the C operator.

Parameters
valuestring type of the C operator

References python.learner.TrainingSpecification.TrainingSpecification.__cOperatorType.

◆ setL()

python.learner.TrainingSpecification.TrainingSpecification.setL (   self,
  value 
)

Setter for Regularization parameter.

Parameters
valuedouble Regularization parameter

References python.learner.TrainingSpecification.TrainingSpecification.__l, and python.uq.dists.Beta.Beta.__l.

◆ toString()


The documentation for this class was generated from the following file: