![]() |
SG++-Doxygen-Documentation
|
Public Member Functions | |
__init__ (self) | |
__str__ (self) | |
clearAlphas (self) | |
createMemento (self) | |
fromJson (cls, jsonObject) | |
getAlpha (self, qoi='_', t=0, dtype=KnowledgeTypes.SIMPLE, iteration=None) | |
getAlphas (self) | |
getAlphasByQoI (self, qoi='_', dtype=KnowledgeTypes.SIMPLE, iteration=None) | |
getAvailableIterations (self) | |
getAvailableKnowledgeTypes (self) | |
getAvailableQoI (self) | |
getAvailableTimeSteps (self) | |
getGrid (self, qoi='_', iteration=None) | |
getGrids (self) | |
getIteration (self) | |
getSparseGridFunction (self, qoi='_', t=0, dtype=KnowledgeTypes.SIMPLE, iteration=None) | |
hasAlpha (self, iteration, qoi, t, dtype) | |
hasGrid (self, iteration, qoi) | |
initWithStandardValues (cls, grid, alpha) | |
setAlphas (self, alphas) | |
setGrids (self, grids) | |
setIteration (self, iteration) | |
setMemento (self, memento) | |
toJson (self) | |
update (self, grid, alpha, qoi, t, dtype, iteration) | |
writeToFile (self, filename) | |
The ASGC knowledge class
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__init__ | ( | self | ) |
Constructor
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, and python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__str__ | ( | self | ) |
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, and python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.clearAlphas | ( | self | ) |
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.createMemento | ( | self | ) |
Creates a new memento to hold the current state
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.toJson(), python.uq.dists.Beta.Beta.toJson(), python.uq.dists.Corr.Corr.toJson(), python.uq.dists.CorrBeta.CorrBeta.toJson(), python.uq.dists.DataDist.DataDist.toJson(), python.uq.dists.J.J.toJson(), python.uq.dists.KDEDist.KDEDist.toJson(), python.uq.dists.Lognormal.Lognormal.toJson(), python.uq.dists.MultivariateNormal.MultivariateNormal.toJson(), python.uq.dists.NatafDist.NatafDist.toJson(), python.uq.dists.Normal.Normal.toJson(), python.uq.dists.SGDEdist.SGDEdist.toJson(), python.uq.dists.TLognormal.TLognormal.toJson(), python.uq.dists.TNormal.TNormal.toJson(), python.uq.dists.Uniform.Uniform.toJson(), python.uq.estimators.SparseGridEstimationStrategy.SparseGridEstimationStrategy.toJson(), python.uq.parameters.Parameter.Parameter.toJson(), python.uq.parameters.ParameterSet.ParameterSet.toJson(), python.uq.sampler.asgc.ASGCSampler.ASGCSampler.toJson(), python.uq.sampler.Sample.Sample.toJson(), python.uq.transformation.JointTransformation.JointTransformation.toJson(), python.uq.transformation.LinearTransformation.LinearTransformation.toJson(), python.uq.transformation.RosenblattTransformation.RosenblattTransformation.toJson(), and python.uq.uq_setting.UQSetting.UQSetting.toJson().
Referenced by python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.writeToFile(), and python.uq.uq_setting.UQSetting.UQSetting.writeToFile().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.fromJson | ( | cls, | |
jsonObject | |||
) |
Restores the ASGC object from the json object with its attributes. @param jsonObject: json object @return: the restored ASGC object
Referenced by python.learner.Learner.Learner.setMemento(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.setMemento(), python.uq.learner.Learner.Learner.setMemento(), python.uq.sampler.asgc.ASGCSampler.ASGCSampler.setMemento(), and python.uq.uq_setting.UQSetting.UQSetting.setMemento().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAlpha | ( | self, | |
qoi = '_' , |
|||
t = 0 , |
|||
dtype = KnowledgeTypes.SIMPLE , |
|||
iteration = None |
|||
) |
Get the coefficient vector for the given configuration @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType @param iteration: int, iteration number
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.hasAlpha().
Referenced by python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getSparseGridFunction().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAlphas | ( | self | ) |
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAlphasByQoI | ( | self, | |
qoi = '_' , |
|||
dtype = KnowledgeTypes.SIMPLE , |
|||
iteration = None |
|||
) |
Get all coefficient vectors for the given quantity of interest @param qoi: string quantity of interest @param iteration: int, iteration number
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, and python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAvailableIterations | ( | self | ) |
get available iterations @return: sorted list of integes
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAvailableKnowledgeTypes | ( | self | ) |
@return list of available KnowledgeTypes
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAvailableQoI | ( | self | ) |
get available quantities of interest @return: list of strings identifying the quantities of interest
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas.
Referenced by python.uq.uq_setting.UQSetting.UQSetting.getResult(), and python.uq.uq_setting.UQSetting.UQSetting.getTimeDependentResults().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAvailableTimeSteps | ( | self | ) |
get available time steps @return: sorted list of floats
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, and python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getGrid | ( | self, | |
qoi = '_' , |
|||
iteration = None |
|||
) |
Get the grid for the given configuration @param qoi: string quantity of interest @param iteration: int, iteration number
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.hasGrid().
Referenced by python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getSparseGridFunction(), python.uq.learner.SimulationLearner.SimulationLearner.learnData(), python.uq.learner.SimulationLearner.SimulationLearner.learnDataWithFolding(), python.uq.learner.SimulationLearner.SimulationLearner.learnDataWithTest(), and python.uq.learner.SimulationLearner.SimulationLearner.refineGrid().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getGrids | ( | self | ) |
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getIteration | ( | self | ) |
get current iteration number
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, and python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getSparseGridFunction | ( | self, | |
qoi = '_' , |
|||
t = 0 , |
|||
dtype = KnowledgeTypes.SIMPLE , |
|||
iteration = None |
|||
) |
Get the sparse grid function (grid, alpha) for the given setting @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType @param iteration: int, iteration number
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration, sgpp::datadriven::LearnerBase.getAlpha(), sgpp::base::InterpolantScalarFunction.getAlpha(), sgpp::base::InterpolantScalarFunctionGradient.getAlpha(), sgpp::base::InterpolantScalarFunctionHessian.getAlpha(), sgpp::base::InterpolantVectorFunction.getAlpha(), sgpp::base::InterpolantVectorFunctionGradient.getAlpha(), sgpp::base::InterpolantVectorFunctionHessian.getAlpha(), sgpp::optimization::ASInterpolantScalarFunction.getAlpha(), sgpp::optimization::ASInterpolantScalarFunctionGradient.getAlpha(), sgpp::optimization::optimizer::NelderMead.getAlpha(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAlpha(), sgpp::base::HierarchisationSLE.getGrid(), sgpp::datadriven::LearnerBase.getGrid(), sgpp::datadriven::LearnerSGDE.getGrid(), sgpp::datadriven::RegressionLearner.getGrid(), sgpp::datadriven::SparseGridDensityEstimator.getGrid(), sgpp::datadriven::ModelFittingBase.getGrid(), sgpp::datadriven::ModelFittingBaseSingleGrid.getGrid(), sgpp::optimization::SplineResponseSurface.getGrid(), sgpp::optimization::SplineResponseSurfaceVector.getGrid(), sgpp::solver::OperationParabolicPDESolverSystem.getGrid(), sgpp::combigrid::OperationEvalCombinationGrid.getGrid(), sgpp::combigrid::OperationEvalFullGrid.getGrid(), sgpp::combigrid::OperationUPCombinationGrid.getGrid(), sgpp::combigrid::OperationUPFullGrid.getGrid(), sgpp::optimization::IterativeGridGenerator.getGrid(), sgpp::pde::PDESolver.getGrid(), python.uq.analysis.asgc.ASGCAnalysis.ASGCAnalysis.getGrid(), python.uq.learner.SimulationLearner.SimulationLearner.getGrid(), python.uq.manager.ASGCUQManager.ASGCUQManager.getGrid(), python.uq.sampler.asgc.ASGCSampler.ASGCSampler.getGrid(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getGrid(), sgpp::datadriven::LearnerSGDEOnOffParallel.getGrid(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.hasAlpha(), and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.hasGrid().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.hasAlpha | ( | self, | |
iteration, | |||
qoi, | |||
t, | |||
dtype | |||
) |
Check if there is a coefficient vector for the given configuration. @param iteration: int iteration number @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas.
Referenced by python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getAlpha(), and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getSparseGridFunction().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.hasGrid | ( | self, | |
iteration, | |||
qoi | |||
) |
Check if there is a grid available for the given configuration @param iteration: int iteration number @param qoi: string quantity of interest
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids.
Referenced by python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getGrid(), and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.getSparseGridFunction().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.initWithStandardValues | ( | cls, | |
grid, | |||
alpha | |||
) |
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.setAlphas | ( | self, | |
alphas | |||
) |
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, and python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.setGrids | ( | self, | |
grids | |||
) |
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.setIteration | ( | self, | |
iteration | |||
) |
set current iteration number
References python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, and python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration.
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.setMemento | ( | self, | |
memento | |||
) |
Restores the state which is saved in the given memento @param memento: the memento object
References python.data.DataContainer.DataContainer.fromJson(), python.learner.solver.CGSolver.CGSolver.fromJson(), python.learner.TrainingSpecification.TrainingSpecification.fromJson(), python.learner.TrainingStopPolicy.TrainingStopPolicy.fromJson(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.fromJson(), python.uq.dists.Beta.Beta.fromJson(), python.uq.dists.Corr.Corr.fromJson(), python.uq.dists.CorrBeta.CorrBeta.fromJson(), python.uq.dists.DataDist.DataDist.fromJson(), python.uq.dists.Dist.Dist.fromJson(), python.uq.dists.J.J.fromJson(), python.uq.dists.KDEDist.KDEDist.fromJson(), python.uq.dists.Lognormal.Lognormal.fromJson(), python.uq.dists.MultivariateNormal.MultivariateNormal.fromJson(), python.uq.dists.NatafDist.NatafDist.fromJson(), python.uq.dists.Normal.Normal.fromJson(), python.uq.dists.SGDEdist.SGDEdist.fromJson(), python.uq.dists.TLognormal.TLognormal.fromJson(), python.uq.dists.TNormal.TNormal.fromJson(), python.uq.dists.Uniform.Uniform.fromJson(), python.uq.estimators.SparseGridEstimationStrategy.SparseGridEstimationStrategy.fromJson(), python.uq.parameters.Parameter.Parameter.fromJson(), python.uq.parameters.ParameterSet.ParameterSet.fromJson(), python.uq.sampler.asgc.ASGCSampler.ASGCSampler.fromJson(), python.uq.sampler.asgc.ASGCSamplerStopPolicy.ASGCSamplerStopPolicy.fromJson(), python.uq.sampler.Sample.Sample.fromJson(), python.uq.transformation.JointTransformation.JointTransformation.fromJson(), python.uq.transformation.LinearTransformation.LinearTransformation.fromJson(), python.uq.transformation.RosenblattTransformation.RosenblattTransformation.fromJson(), python.uq.transformation.Transformation.Transformation.fromJson(), python.uq.uq_setting.UQSetting.UQSetting.fromJson(), python.learner.Learner.Learner.fromJson(), and python.uq.learner.Learner.Learner.fromJson().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.toJson | ( | self | ) |
@return: a string that represents the object
Referenced by python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__str__(), python.uq.uq_setting.UQSetting.UQSetting.__str__(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.createMemento(), python.uq.sampler.asgc.ASGCSampler.ASGCSampler.createMemento(), and python.uq.uq_setting.UQSetting.UQSetting.createMemento().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.update | ( | self, | |
grid, | |||
alpha, | |||
qoi, | |||
t, | |||
dtype, | |||
iteration | |||
) |
Update the knowledge @param grid: Grid @param alpha: numpy array surplus vector @param qoi: string quantity of interest @param t: float time step @param dtype: KnowledgeType @param iteration: int iteration number
References python.learner.LearnedKnowledge.LearnedKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__alphas, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__grids, python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.__iteration, and python.uq.sampler.asgc.ASGCSampler.ASGCSampler.__iteration.
Referenced by python.uq.refinement.RefinementStrategy.Ranking.rank(), and python.learner.LearnedKnowledge.LearnedKnowledge.setMemento().
python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.writeToFile | ( | self, | |
filename | |||
) |
Write knowledge object to file
References python.learner.LearnedKnowledge.LearnedKnowledge.createMemento(), python.learner.Learner.Learner.createMemento(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.createMemento(), python.uq.learner.Learner.Learner.createMemento(), python.uq.sampler.asgc.ASGCSampler.ASGCSampler.createMemento(), and python.uq.uq_setting.UQSetting.UQSetting.createMemento().
Referenced by python.uq.uq_setting.UQSetting.UQSetting.run(), and python.uq.uq_setting.UQSetting.UQSetting.waitForResults().