![]() |
SG++-Doxygen-Documentation
|
Public Member Functions | |
__init__ (self, samples=None, ixs=None, n=5000, npaths=100, isPositive=False, percentile=1) | |
mean (self, grid, alpha, U, T) | |
var (self, grid, alpha, U, T, mean) | |
Public Attributes | |
samples | |
verbose | |
python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__init__ | ( | self, | |
samples = None , |
|||
ixs = None , |
|||
n = 5000 , |
|||
npaths = 100 , |
|||
isPositive = False , |
|||
percentile = 1 |
|||
) |
Constructor @param samples: ndarray containing monte carlo samples @param ixs: list of indices for which there is data available @param n: number of samples per path @param npaths: number of paths @param epsilon: maximal error with respect to the central limit theorem @param beta: confidence level for central limit theorem @param isPositive: forces the function to be positive
References python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__init__().
Referenced by python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__init__().
python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.mean | ( | self, | |
grid, | |||
alpha, | |||
U, | |||
T | |||
) |
Estimate the expectation value using Monte-Carlo. \frac{1}{N}\sum\limits_{i = 1}^N f_N(x_i) where x_i \in \Gamma @return: (mean, error of bootstrapping)
References python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__getSamples(), python.uq.estimators.MCEstimator.MCEstimator.__npaths, python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__npaths, python.uq.estimators.MCEstimator.MCEstimator.__percentile, python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__percentile, and python.uq.estimators.SparseGridEstimationStrategy.SparseGridEstimationStrategy._extractPDFforMomentEstimation().
Referenced by python.uq.analysis.asgc.ASGCAnalysis.ASGCAnalysis.computeMoments(), python.uq.analysis.mc.MCAnalysis.MCAnalysis.computeMoments(), python.uq.dists.LibAGFDist.LibAGFDist.var(), and python.uq.dists.SGDEdist.SGDEdist.var().
python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.var | ( | self, | |
grid, | |||
alpha, | |||
U, | |||
T, | |||
mean | |||
) |
Estimate the expectation value using Monte-Carlo. \frac{1}{N}\sum\limits_{i = 1}^N (f_N(x_i) - E(f))^2 where x_i \in \Gamma @return: (variance, error of bootstrapping)
References python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__getSamples(), python.uq.estimators.MCEstimator.MCEstimator.__npaths, python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__npaths, python.uq.estimators.MCEstimator.MCEstimator.__percentile, python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.__percentile, and python.uq.estimators.SparseGridEstimationStrategy.SparseGridEstimationStrategy._extractPDFforMomentEstimation().
Referenced by python.uq.analysis.asgc.ASGCAnalysis.ASGCAnalysis.computeMoments(), python.uq.analysis.mc.MCAnalysis.MCAnalysis.computeMoments(), python.uq.dists.Dist.Dist.cov(), python.uq.dists.DataDist.DataDist.std(), python.uq.dists.Dist.Dist.std(), and python.uq.dists.J.J.std().
python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.samples |
Referenced by python.uq.sampler.Sample.SamplesIterator.__next__(), python.uq.dists.DataDist.DataDist.cdf(), python.uq.dists.DataDist.DataDist.mean(), python.uq.dists.DataDist.DataDist.rvs(), python.uq.dists.LibAGFDist.LibAGFDist.rvs(), python.uq.dists.DataDist.DataDist.toJson(), and python.uq.dists.DataDist.DataDist.var().
python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.verbose |
Referenced by python.uq.operations.forcePositivity.operationMakePositiveFast.OperationMakePositiveFast.addFullGridPoints(), python.uq.refinement.RefinementManager.RefinementManager.candidates(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGridCandidates.computeCandidates(), python.uq.operations.forcePositivity.findIntersections.IntersectionCandidates.findIntersections(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGridCandidates.getLocalMaxLevel(), python.uq.manager.ASGCUQManager.ASGCUQManager.learnDataWithoutTest(), python.uq.manager.ASGCUQManager.ASGCUQManager.learnDataWithTest(), python.uq.operations.forcePositivity.operationMakePositive.OperationMakePositive.makeCurrentNodalValuesPositive(), python.uq.operations.forcePositivity.operationMakePositive.OperationMakePositive.makePositive(), python.uq.operations.forcePositivity.operationMakePositiveFast.OperationMakePositiveFast.makePositive(), python.uq.manager.ASGCUQManager.ASGCUQManager.recomputeStats(), python.uq.refinement.RefinementManager.RefinementManager.refineGrid(), and python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGridCandidates.splitFullGrids().