SG++-Doxygen-Documentation
Loading...
Searching...
No Matches
python.uq.dists.Dist.Dist Class Reference
Inheritance diagram for python.uq.dists.Dist.Dist:

Public Member Functions

 cdf (self, p, *args, **kws)
 
 corrcoeff (self, covMatrix=None)
 
 cov (self)
 
 crossEntropy (self, samples)
 
 fromJson (cls, jsonObject)
 
 getBounds (self)
 
 getDim (self)
 
 klDivergence (self, dist, testSamplesUnit=None, testSamplesProb=None, n=1e4)
 
 l2error (self, dist, testSamplesUnit=None, testSamplesProb=None, n=1e4, dtype=SampleType.ACTIVEPROBABILISTIC)
 
 mean (self)
 
 pdf (self, p, *args, **kws)
 
 ppf (self, p, *args, **kws)
 
 rvs (self, n=1)
 
 std (self)
 
 var (self)
 

Detailed Description

The Dist class, which is the super class for all
distributions of this package

Member Function Documentation

◆ cdf()

python.uq.dists.Dist.Dist.cdf (   self,
  p,
args,
**  kws 
)
Cumulative distribution function
@param p: (tuple) of floats
@return: cumulative distribution value

◆ corrcoeff()

◆ cov()

python.uq.dists.Dist.Dist.cov (   self)
Get covariance matrix

References sgpp::base::ForwardSelectorRefinement_refinement_key.getDim(), sgpp::base::ImpurityRefinement_refinement_key.getDim(), sgpp::base::PredictiveRefinement_refinement_key.getDim(), sgpp::datadriven::SampleProvider.getDim(), sgpp::datadriven::ArffFileSampleProvider.getDim(), sgpp::datadriven::CSVFileSampleProvider.getDim(), sgpp::datadriven::FileSampleDecorator.getDim(), sgpp::datadriven::KernelDensityEstimator.getDim(), sgpp::datadriven::LearnerSGDE.getDim(), sgpp::datadriven::SparseGridDensityEstimator.getDim(), sgpp::datadriven::DensityEstimator.getDim(), python.data.DataContainer.DataContainer.getDim(), python.uq.analysis.asgc.ASGCAnalysisSpecification.ASGCAnalysisSpecification.getDim(), python.uq.dists.Beta.Beta.getDim(), python.uq.dists.Corr.Corr.getDim(), python.uq.dists.DataDist.DataDist.getDim(), python.uq.dists.Dist.Dist.getDim(), python.uq.dists.EstimatedDist.EstimatedDist.getDim(), python.uq.dists.J.J.getDim(), python.uq.dists.LibAGFDist.LibAGFDist.getDim(), python.uq.dists.Lognormal.Lognormal.getDim(), python.uq.dists.MultivariateNormal.MultivariateNormal.getDim(), python.uq.dists.NatafDist.NatafDist.getDim(), python.uq.dists.Normal.Normal.getDim(), python.uq.dists.TLognormal.TLognormal.getDim(), python.uq.dists.TNormal.TNormal.getDim(), python.uq.dists.Uniform.Uniform.getDim(), python.uq.learner.SimulationLearnerSpecification.SimulationLearnerSpecification.getDim(), python.uq.manager.ASGCUQManager.ASGCUQManager.getDim(), python.uq.parameters.ParameterSet.ParameterSet.getDim(), python.uq.uq_setting.UQSetting.UQSetting.getDim(), python.uq.sampler.Sample.Samples.getDim(), python.uq.sampler.Sample.Sample.getDim(), sgpp::datadriven::BayesianOptimization.var(), python.uq.dists.Beta.Beta.var(), python.uq.dists.DataDist.DataDist.var(), python.uq.dists.Dist.Dist.var(), python.uq.dists.J.J.var(), python.uq.dists.KDEDist.KDEDist.var(), python.uq.dists.LibAGFDist.LibAGFDist.var(), python.uq.dists.Lognormal.Lognormal.var(), python.uq.dists.Normal.Normal.var(), python.uq.dists.SGDEdist.SGDEdist.var(), python.uq.dists.TNormal.TNormal.var(), python.uq.dists.Uniform.Uniform.var(), python.uq.estimators.Estimator.Estimator.var(), python.uq.estimators.SparseGridEstimator.SparseGridEstimator.var(), python.uq.estimators.AnalyticEstimationStrategy.AnalyticEstimationStrategy.var(), python.uq.estimators.CollocationPointsStrategy.CollocationPointsStrategy.var(), python.uq.estimators.MonteCarloStrategy.MonteCarloStrategy.var(), python.uq.estimators.SparseGridEstimationStrategy.SparseGridEstimationStrategy.var(), python.uq.analysis.Analysis.Analysis.var(), and python.uq.estimators.MCEstimator.MCEstimator.var().

Referenced by python.uq.dists.Dist.Dist.corrcoeff().

◆ crossEntropy()

◆ fromJson()

◆ getBounds()

python.uq.dists.Dist.Dist.getBounds (   self)
Get the distribution's intervals
@return: numpy array [dim, 2]

Referenced by python.uq.dists.J.J.discretize(), and python.uq.dists.Dist.Dist.l2error().

◆ getDim()

◆ klDivergence()

python.uq.dists.Dist.Dist.klDivergence (   self,
  dist,
  testSamplesUnit = None,
  testSamplesProb = None,
  n = 1e4 
)
computes the KL-divergence from this distribution with respect to dist

\approx \frac{1}{n} \sum_{i = 1}^{n} p(x_i) log_2 (p(x_i) / q(x_i))

and for samples obtained via importance sampling it holds

\approx \frac{1}{n} \sum_{i = 1}^{n} log_2 (p(y_i) / q(y_i))
= \frac{1}{n} \sum_{i = 1}^{n} log_2 p(y_i) - log_2 q(y_i))
= [\frac{1}{n} \sum_{i = 1}^{n} log_2 p(y_i)] - [\frac{1}{n} \sum_{i = 1}^{n} log_2 q(y_i)]
= mean(log_2 p(y_i)) - mean(log_2 q(y_i))

@param dist: Dist
@param testSamplesUnit: numpy array
@param testSamplesProb: numpy array

References sgpp::datadriven::KernelDensityEstimator.pdf(), sgpp::datadriven::LearnerSGDE.pdf(), sgpp::datadriven::SparseGridDensityEstimator.pdf(), sgpp::datadriven::DensityEstimator.pdf(), sgpp::datadriven::KernelDensityEstimator.pdf(), sgpp::datadriven::LearnerSGDE.pdf(), sgpp::datadriven::SparseGridDensityEstimator.pdf(), sgpp::datadriven::DensityEstimator.pdf(), python.uq.dists.DataDist.DataDist.pdf(), python.uq.dists.Dist.Dist.pdf(), python.uq.dists.J.J.pdf(), python.uq.dists.Beta.Beta.pdf(), python.uq.dists.Corr.Corr.pdf(), python.uq.dists.CorrBeta.CorrBeta.pdf(), python.uq.dists.KDEDist.KDEDist.pdf(), python.uq.dists.LibAGFDist.LibAGFDist.pdf(), python.uq.dists.Lognormal.Lognormal.pdf(), python.uq.dists.MultivariateNormal.MultivariateNormal.pdf(), python.uq.dists.NatafDist.NatafDist.pdf(), python.uq.dists.Normal.Normal.pdf(), python.uq.dists.SGDEdist.SGDEdist.pdf(), python.uq.dists.TLognormal.TLognormal.pdf(), python.uq.dists.TNormal.TNormal.pdf(), and python.uq.dists.Uniform.Uniform.pdf().

◆ l2error()

python.uq.dists.Dist.Dist.l2error (   self,
  dist,
  testSamplesUnit = None,
  testSamplesProb = None,
  n = 1e4,
  dtype = SampleType.ACTIVEPROBABILISTIC 
)
mean squared error, defined as

|| p - p_n ||^2 = \int (p(x) - p_n(x))^2 * p(x) dx
                ~ 1/n \sum_i (p(x_i) - p_n(x_i)^2
for x_i drawn from p.
@param dist: Dist
@param testSamplesUnit: numpy array
@param testSamplesProb: numpy array
@param n: int, if no test samples are given, just select them
          uniformly within he range of the distribution

References sgpp::base::DistributionBeta.getBounds(), sgpp::base::DistributionLogNormal.getBounds(), sgpp::base::DistributionNormal.getBounds(), sgpp::base::DistributionTruncExponential.getBounds(), sgpp::base::DistributionTruncGamma.getBounds(), sgpp::base::DistributionTruncNormal.getBounds(), sgpp::base::DistributionUniform.getBounds(), sgpp::base::DistributionsVector.getBounds(), sgpp::base::Distribution.getBounds(), python.uq.dists.Beta.Beta.getBounds(), python.uq.dists.Corr.Corr.getBounds(), python.uq.dists.CorrBeta.CorrBeta.getBounds(), python.uq.dists.DataDist.DataDist.getBounds(), python.uq.dists.Dist.Dist.getBounds(), python.uq.dists.EstimatedDist.EstimatedDist.getBounds(), python.uq.dists.J.J.getBounds(), python.uq.dists.LibAGFDist.LibAGFDist.getBounds(), python.uq.dists.Lognormal.Lognormal.getBounds(), python.uq.dists.MultivariateNormal.MultivariateNormal.getBounds(), python.uq.dists.NatafDist.NatafDist.getBounds(), python.uq.dists.Normal.Normal.getBounds(), python.uq.dists.TNormal.TNormal.getBounds(), python.uq.dists.Uniform.Uniform.getBounds(), python.uq.parameters.ParameterSet.ParameterSet.getBounds(), python.uq.transformation.JointTransformation.JointTransformation.getBounds(), python.uq.transformation.LinearTransformation.LinearTransformation.getBounds(), sgpp::datadriven::KernelDensityEstimator.pdf(), sgpp::datadriven::LearnerSGDE.pdf(), sgpp::datadriven::SparseGridDensityEstimator.pdf(), sgpp::datadriven::DensityEstimator.pdf(), sgpp::datadriven::KernelDensityEstimator.pdf(), sgpp::datadriven::LearnerSGDE.pdf(), sgpp::datadriven::SparseGridDensityEstimator.pdf(), sgpp::datadriven::DensityEstimator.pdf(), python.uq.dists.DataDist.DataDist.pdf(), python.uq.dists.Dist.Dist.pdf(), python.uq.dists.J.J.pdf(), python.uq.dists.Beta.Beta.pdf(), python.uq.dists.Corr.Corr.pdf(), python.uq.dists.CorrBeta.CorrBeta.pdf(), python.uq.dists.KDEDist.KDEDist.pdf(), python.uq.dists.LibAGFDist.LibAGFDist.pdf(), python.uq.dists.Lognormal.Lognormal.pdf(), python.uq.dists.MultivariateNormal.MultivariateNormal.pdf(), python.uq.dists.NatafDist.NatafDist.pdf(), python.uq.dists.Normal.Normal.pdf(), python.uq.dists.SGDEdist.SGDEdist.pdf(), python.uq.dists.TLognormal.TLognormal.pdf(), python.uq.dists.TNormal.TNormal.pdf(), and python.uq.dists.Uniform.Uniform.pdf().

◆ mean()

◆ pdf()

python.uq.dists.Dist.Dist.pdf (   self,
  p,
args,
**  kws 
)
Probability distribution function
@param p: (tuple) of floats
@return: probability distribution value

Referenced by python.uq.dists.Dist.Dist.crossEntropy(), python.uq.dists.J.J.discretize(), python.uq.dists.Dist.Dist.klDivergence(), and python.uq.dists.Dist.Dist.l2error().

◆ ppf()

python.uq.dists.Dist.Dist.ppf (   self,
  p,
args,
**  kws 
)
Point percentile function
@param p: (tuple) of floats
@return: point percentile value

Referenced by python.uq.dists.EstimatedDist.EstimatedDist.rvs(), python.uq.dists.NatafDist.NatafDist.rvs(), python.uq.dists.KDEDist.KDEDist.rvs(), and python.uq.dists.SGDEdist.SGDEdist.rvs().

◆ rvs()

python.uq.dists.Dist.Dist.rvs (   self,
  n = 1 
)
Generates n random numbers w.r.t. the marginal distributions
@param n: int number of random values
@return: numpy array [n, dim]

◆ std()

◆ var()


The documentation for this class was generated from the following file: