![]() |
SG++-Doxygen-Documentation
|
Public Member Functions | |
__init__ (self) | |
getKnowledgeType (self) | |
rank (self, grid, gp, alphas, params, t=0, *args, **kws) | |
update (self, grid, v, gpi, params) | |
Protected Attributes | |
_dtype | |
_ranking | |
python.uq.refinement.RefinementStrategy.Ranking.__init__ | ( | self | ) |
Reimplemented in python.uq.refinement.RefinementStrategy.SurplusRanking, python.uq.refinement.RefinementStrategy.WeightedSurplusRanking, python.uq.refinement.RefinementStrategy.SquaredSurplusRanking, python.uq.refinement.RefinementStrategy.SurplusRatioRanking, python.uq.refinement.RefinementStrategy.AnchoredWeightedL2OptRanking, python.uq.refinement.RefinementStrategy.WeightedL2OptRanking, python.uq.refinement.RefinementStrategy.AnchoredExpectationValueOptRanking, python.uq.refinement.RefinementStrategy.ExpectationValueOptRanking, python.uq.refinement.RefinementStrategy.VarianceOptRanking, python.uq.refinement.RefinementStrategy.AnchoredVarianceOptRanking, python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking, python.uq.refinement.RefinementStrategy.AnchoredMeanSquaredOptRanking, python.uq.refinement.RefinementStrategy.SquaredSurplusBFRanking, python.uq.refinement.RefinementStrategy.WeightedSurplusBFRanking, python.uq.refinement.RefinementStrategy.WeightedL2BFRanking, python.uq.refinement.RefinementStrategy.ExpectationValueBFRanking, python.uq.refinement.RefinementStrategy.SurplusRatioEstimationRanking, python.uq.refinement.RefinementStrategy.LinearSurplusEstimationRanking, python.uq.refinement.RefinementStrategy.PredictiveRanking, and python.uq.refinement.RefinementStrategy.VarianceBFRanking.
python.uq.refinement.RefinementStrategy.Ranking.getKnowledgeType | ( | self | ) |
References python.uq.refinement.RefinementStrategy.Ranking._dtype, python.uq.refinement.RefinementStrategy.SquaredSurplusRanking._dtype, python.uq.refinement.RefinementStrategy.AnchoredMeanSquaredOptRanking._dtype, python.uq.refinement.RefinementStrategy.SquaredSurplusBFRanking._dtype, and python.uq.sampler.Sample.Samples._dtype.
python.uq.refinement.RefinementStrategy.Ranking.rank | ( | self, | |
grid, | |||
gp, | |||
alphas, | |||
params, | |||
t = 0 , |
|||
* | args, | ||
** | kws | ||
) |
Reimplemented in python.uq.refinement.RefinementStrategy.SurplusRatioRanking, python.uq.refinement.RefinementStrategy.PredictiveRanking, python.uq.refinement.RefinementStrategy.SquaredSurplusBFRanking, python.uq.refinement.RefinementStrategy.VarianceBFRanking, python.uq.refinement.RefinementStrategy.ExpectationValueBFRanking, python.uq.refinement.RefinementStrategy.SurplusRatioEstimationRanking, and python.uq.refinement.RefinementStrategy.LinearSurplusEstimationRanking.
References python.uq.refinement.RefinementStrategy.Ranking._ranking, python.uq.refinement.RefinementStrategy.VarianceBFRanking._ranking, sgpp::datadriven::ModelFittingDensityDifferenceEstimationCG.update(), sgpp::datadriven::ModelFittingDensityDifferenceEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationCG.update(), sgpp::datadriven::ModelFittingDensityEstimationCombi.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOffParallel.update(), sgpp::datadriven::ModelFittingDensityEstimation.update(), sgpp::datadriven::ModelFittingDensityDifferenceEstimationCG.update(), sgpp::datadriven::ModelFittingDensityDifferenceEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationCG.update(), sgpp::datadriven::ModelFittingDensityEstimationCombi.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOffParallel.update(), sgpp::datadriven::ModelFittingDensityEstimation.update(), sgpp::datadriven::ModelFittingDensityRatioEstimation.update(), sgpp::datadriven::ModelFittingLeastSquares.update(), sgpp::datadriven::ModelFittingClassification.update(), sgpp::datadriven::ModelFittingDensityDifferenceEstimationCG.update(), sgpp::datadriven::ModelFittingDensityDifferenceEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationCG.update(), sgpp::datadriven::ModelFittingDensityEstimationCombi.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOffParallel.update(), sgpp::datadriven::ModelFittingLeastSquares.update(), sgpp::datadriven::ModelFittingDensityEstimation.update(), sgpp::datadriven::ModelFittingBase.update(), sgpp::datadriven::ModelFittingClassification.update(), sgpp::datadriven::ModelFittingDensityDifferenceEstimationCG.update(), sgpp::datadriven::ModelFittingDensityDifferenceEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationCG.update(), sgpp::datadriven::ModelFittingDensityEstimationCombi.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOff.update(), sgpp::datadriven::ModelFittingDensityEstimationOnOffParallel.update(), sgpp::datadriven::ModelFittingDensityRatioEstimation.update(), sgpp::datadriven::ModelFittingDensityEstimation.update(), sgpp::datadriven::ModelFittingBase.update(), sgpp::base::LinearLoadBalancer.update(), sgpp::base::ForwardSelectorRefinementIndicator.update(), sgpp::base::ImpurityRefinementIndicator.update(), sgpp::base::HashGridStorage.update(), python.learner.LearnedKnowledge.LearnedKnowledge.update(), python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge.update(), python.uq.refinement.RefinementStrategy.WeightedSurplusBFRanking.update(), python.uq.refinement.AdmissibleSet.RefinableNodesSet.update(), python.uq.refinement.AdmissibleSet.AdmissibleSparseGridNodeSet.update(), python.uq.refinement.AdmissibleSet.AdmissibleSetGenerator.update(), python.uq.refinement.RefinementStrategy.VarianceBFRanking.update(), python.uq.refinement.RefinementStrategy.SurplusRanking.update(), python.uq.refinement.RefinementStrategy.SquaredSurplusRanking.update(), python.uq.refinement.RefinementStrategy.Ranking.update(), python.uq.refinement.RefinementStrategy.WeightedSurplusRanking.update(), python.uq.refinement.RefinementStrategy.AnchoredWeightedL2OptRanking.update(), python.uq.refinement.RefinementStrategy.WeightedL2OptRanking.update(), python.uq.refinement.RefinementStrategy.AnchoredExpectationValueOptRanking.update(), python.uq.refinement.RefinementStrategy.ExpectationValueOptRanking.update(), python.uq.refinement.RefinementStrategy.VarianceOptRanking.update(), python.uq.refinement.RefinementStrategy.AnchoredVarianceOptRanking.update(), python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking.update(), python.uq.refinement.RefinementStrategy.AnchoredMeanSquaredOptRanking.update(), python.uq.refinement.RefinementStrategy.WeightedL2BFRanking.update(), sgpp::base::ScreenOutput.update(), and sgpp::base::LinearLoadBalancerMultiPlatform.update().
python.uq.refinement.RefinementStrategy.Ranking.update | ( | self, | |
grid, | |||
v, | |||
gpi, | |||
params | |||
) |
Reimplemented in python.uq.refinement.RefinementStrategy.WeightedSurplusBFRanking, python.uq.refinement.RefinementStrategy.VarianceBFRanking, python.uq.refinement.RefinementStrategy.SurplusRanking, python.uq.refinement.RefinementStrategy.SquaredSurplusRanking, python.uq.refinement.RefinementStrategy.WeightedSurplusRanking, python.uq.refinement.RefinementStrategy.AnchoredWeightedL2OptRanking, python.uq.refinement.RefinementStrategy.WeightedL2OptRanking, python.uq.refinement.RefinementStrategy.AnchoredExpectationValueOptRanking, python.uq.refinement.RefinementStrategy.ExpectationValueOptRanking, python.uq.refinement.RefinementStrategy.VarianceOptRanking, python.uq.refinement.RefinementStrategy.AnchoredVarianceOptRanking, python.uq.refinement.RefinementStrategy.MeanSquaredOptRanking, python.uq.refinement.RefinementStrategy.AnchoredMeanSquaredOptRanking, and python.uq.refinement.RefinementStrategy.WeightedL2BFRanking.
Referenced by python.uq.refinement.RefinementStrategy.Ranking.rank(), and python.learner.LearnedKnowledge.LearnedKnowledge.setMemento().
|
protected |
|
protected |