![]() |
SG++-Doxygen-Documentation
|
#include <DistributionLogNormal.hpp>
Public Member Functions | |
DistributionLogNormal (double mean, double stddev) | |
Constructor. | |
double | eval (double x) |
sgpp::base::DataVector | getBounds () |
See DistributionNormal.cpp: 2*Phi(z)-1 of a normal distirbutions mass lie inside the interval [mean-z*sigma,mean+z*sigma]. | |
sgpp::base::DataVector | getCharacteristics () |
return all relevant characteristic values (e.g. | |
sgpp::base::DistributionType | getType () |
double | sample () |
virtual | ~DistributionLogNormal () |
Destructor. | |
![]() | |
Distribution (typename std::chrono::system_clock::duration::rep seed=777) | |
Constructor. | |
sgpp::base::DataVector | samples (size_t num) |
virtual | ~Distribution () |
Destructor. | |
Additional Inherited Members | |
![]() | |
std::default_random_engine | gen |
|
inline |
Constructor.
|
inlinevirtual |
Destructor.
|
inlinevirtual |
Implements sgpp::base::Distribution.
References M_PI.
Referenced by python.uq.analysis.asgc.ASGCAnalysis.ASGCAnalysis::estimateDensity().
|
inlinevirtual |
See DistributionNormal.cpp: 2*Phi(z)-1 of a normal distirbutions mass lie inside the interval [mean-z*sigma,mean+z*sigma].
Therefore corresponding accuracies for logNormal distribution are achieved in an interval [exp(mean-z*sigma),exp(mean+z*sigma)] As for the normal distribution, we choose z=9 for precision of ~ 10^(-18)
Implements sgpp::base::Distribution.
Referenced by python.uq.dists.J.J::discretize(), and python.uq.dists.Dist.Dist::l2error().
|
inlinevirtual |
return all relevant characteristic values (e.g.
mean and standarddeviation for normal distribution)
Implements sgpp::base::Distribution.
|
inlinevirtual |
Implements sgpp::base::Distribution.
References sgpp::base::Lognormal.
|
inlinevirtual |
Implements sgpp::base::Distribution.
References sgpp::base::Distribution::gen.
Referenced by python.uq.uq_setting.UQSettingManager.UQSettingManager::do_sampleList().