|
| AlgorithmAdaBoostIdentity (base::Grid &SparseGrid, base::GridType gridType, base::level_t gridLevel, base::DataMatrix &trainData, base::DataVector &trainDataClass, size_t NUM, double lambda, size_t IMAX, double eps, size_t IMAX_final, double eps_final, double firstLabel, double secondLabel, double threshold, double maxLambda, double minLambda, size_t searchNum, bool refine, size_t refineMode, size_t refineNum, size_t numberOfAda, double percentOfAda, size_t mode) |
| Std-Constructor.
|
|
virtual | ~AlgorithmAdaBoostIdentity () |
| Std-Deconstructor.
|
|
| AlgorithmAdaBoostBase (base::Grid &SparseGrid, base::GridType gridType, base::level_t gridLevel, base::DataMatrix &trainData, base::DataVector &trainDataClass, size_t NUM, double lambda, size_t IMAX, double eps, size_t IMAX_final, double eps_final, double firstLabel, double secondLabel, double threshold, double maxLambda, double minLambda, size_t searchNum, bool refine, size_t refineMode, size_t refineNum, size_t numberOfAda, double percentOfAda, size_t mode) |
| Std-Constructor.
|
|
void | classif (base::DataMatrix &testData, base::DataVector &algorithmClassTrain, base::DataVector &algorithmClassTest, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
| Performs a classify for the testing dataset according to the baselearners get from the algorithm.
|
|
void | doAdaBoostR2 (base::DataMatrix &weights, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest, std::string lossFucType) |
| Performs the Adaboost.R2(a regression algorithm)
|
|
void | doAdaBoostRT (base::DataMatrix &weights, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest, double Tvalue, std::string powerType) |
| Performs the Adaboost.RT(a regression algorithm)
|
|
void | doDiscreteAdaBoost (base::DataVector &hypoWeight, base::DataVector &weightError, base::DataMatrix &weights, base::DataMatrix &decision, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
| Performs the Discrete Adaboost.
|
|
void | doRealAdaBoost (base::DataMatrix &weights, base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
| Performs the Real Adaboost.
|
|
void | doRefinement (base::DataVector &alpha_ada, base::DataVector &weight_ada, size_t curBaseLearner) |
| Performs refinement of grid to get an adaptive grid.
|
|
void | eval (base::DataMatrix &testData, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest) |
| Performs a real value calculate for the testing dataset.
|
|
void | getAccuracy (base::DataMatrix &testData, base::DataVector &testDataClass, double *accuracy_train, double *accuracy_test) |
| Performs an accuracy evaluation for the testing dataset.
|
|
void | getAccuracyBL (base::DataMatrix &testData, base::DataVector &testDataClass, base::DataMatrix &algorithmValueTrain, base::DataMatrix &algorithmValueTest, double *accuracy_train, double *accuracy_test, size_t yourBaseLearner) |
| Performs an accuracy evaluation for the testing dataset with a specified number of base learner.
|
|
size_t | getActualBL () |
| Get the actual base learners after doing adaboosting.
|
|
size_t | getMaxGridPoint (size_t baseLearner) |
| Get the max GridPoint ever used in adaboosting.
|
|
size_t | getMeanGridPoint (size_t baseLearner) |
| Get the mean GridPoint ever used in adaboosting.
|
|
void | getROC (base::DataMatrix &validationData, base::DataVector &validationDataClass, double *acc, double *sensitivity, double *specificity, double *precision, double *recall, double *fOneScore) |
| Performs an evaluation to get ROC related parameter.
|
|
size_t | getSumGridPoint (size_t baseLearner) |
| Get the sum GridPoint ever used in adaboosting.
|
|
double | hValue (double realValue) |
| Performs a hypothesis classifier.
|
|
virtual | ~AlgorithmAdaBoostBase () |
| Std-Deconstructor.
|
|
|
size_t | actualBaseLearners |
| Actual base learners number for Adaboosting.
|
|
size_t | boostMode |
| Set the boost mode (1: Discrete Adaboost, 2: Real Adaboost)
|
|
base::DataVector * | classes |
| Pointer to the class(real value in regression) of the data vector.
|
|
base::DataMatrix * | data |
| Pointer to the data matrix.
|
|
size_t | dim |
| DataSet Dimension.
|
|
double | epsilon |
| Parameter for CG solver(during the refinement)
|
|
double | epsilon_final |
| Parameter for CG solver(for the last refinement)
|
|
base::Grid * | grid |
| the grid
|
|
size_t | gridPoint |
| Number of grid points.
|
|
size_t | imax |
| Parameter for CG solver(during the refinement)
|
|
size_t | imax_final |
| Parameter for CG solver(for the last refinement)
|
|
double | labelOne |
| One label of the DataSet.
|
|
double | labelTwo |
| Another label of the DataSet.
|
|
double | lamb |
| the lambda, the regularisation parameter
|
|
double | lambLogMax |
| Log of the Max lambda in searching for optimal lambda.
|
|
size_t | lambSteps |
| Number of iteration in searching for optimal lambda.
|
|
double | lambStepsize |
| Interval size with logrange used in searching optimal lambda.
|
|
base::level_t | level |
| grid level
|
|
base::DataVector * | maxGridPoint |
| Number of the maximum grid points used in the algorithm.
|
|
size_t | numBaseLearners |
| Number of base learner for Adaboosting.
|
|
size_t | numData |
| the size of the grid
|
|
size_t | numOfAda |
| Number of Grid points to refine.
|
|
double | perOfAda |
| Percentage of Grid points to refine(between 0 and 1)
|
|
bool | refinement |
| Judgement of grid refine.
|
|
size_t | refineMode |
| Select the refine mode(1:use grid number, 2: use grid number percentage)
|
|
size_t | refineTimes |
| Number of refinement with a certain percentage of Grid points.
|
|
base::DataVector * | sumGridPoint |
| Number of the sum grid points used in the algorithm.
|
|
double | threshold |
| Threshold to predict class.
|
|
base::GridType | type |
| type of grid; implemented cases: Linear Grid, LinearL0Boundary Grid, ModLinear Grid;
|
|