SG++-Doxygen-Documentation
Loading...
Searching...
No Matches
sgpp::datadriven::OperationDensitySamplingLinear Class Reference

keep applying marginalize to function until it's reduced to only 1 dimension More...

#include <OperationDensitySamplingLinear.hpp>

Inheritance diagram for sgpp::datadriven::OperationDensitySamplingLinear:
sgpp::datadriven::OperationDensitySampling

Public Member Functions

void doSampling (base::DataVector *alpha, base::DataMatrix *&samples, size_t num_samples)
 Sampling with mixed starting dimensions.
 
void doSampling (base::DataVector *alpha, base::DataMatrix *&samples, size_t num_samples, size_t dim_x)
 Sampling with specified starting dimension.
 
 OperationDensitySamplingLinear (base::Grid *grid)
 
virtual ~OperationDensitySamplingLinear ()
 
- Public Member Functions inherited from sgpp::datadriven::OperationDensitySampling
 OperationDensitySampling ()
 
virtual ~OperationDensitySampling ()
 

Protected Member Functions

void doSampling_in_next_dim (base::Grid *g_in, base::DataVector *a_in, size_t dim_x, base::DataVector *&sampleVec, size_t &curr_dim, unsigned int *seedp)
 
void doSampling_start_dimX (base::Grid *g_in, base::DataVector *a_in, size_t dim_start, base::DataVector *&sampleVec, unsigned int *seedp)
 

Protected Attributes

base::Gridgrid
 

Detailed Description

keep applying marginalize to function until it's reduced to only 1 dimension

Constructor & Destructor Documentation

◆ OperationDensitySamplingLinear()

sgpp::datadriven::OperationDensitySamplingLinear::OperationDensitySamplingLinear ( base::Grid grid)
inlineexplicit

◆ ~OperationDensitySamplingLinear()

virtual sgpp::datadriven::OperationDensitySamplingLinear::~OperationDensitySamplingLinear ( )
inlinevirtual

Member Function Documentation

◆ doSampling() [1/2]

void sgpp::datadriven::OperationDensitySamplingLinear::doSampling ( base::DataVector alpha,
base::DataMatrix *&  samples,
size_t  num_samples 
)
virtual

◆ doSampling() [2/2]

void sgpp::datadriven::OperationDensitySamplingLinear::doSampling ( base::DataVector alpha,
base::DataMatrix *&  samples,
size_t  num_samples,
size_t  dim_x 
)
virtual

Sampling with specified starting dimension.

Parameters
alphaCoefficient vector for current grid
samplesOutput DataMatrix (rows: # of samples, columns: # of dims)
num_samples# of samples to draw
dim_xStarting dimension

Implements sgpp::datadriven::OperationDensitySampling.

References sgpp::op_factory::createOperationDensityMargTo1D(), sgpp::op_factory::createOperationDensitySampling1D(), sgpp::datadriven::OperationDensitySampling1D::doSampling1D(), doSampling_start_dimX(), sgpp::base::DataVector::get(), sgpp::base::Grid::getDimension(), grid, sgpp::datadriven::OperationDensityMargTo1D::margToDimX(), and sgpp::base::DataVector::set().

◆ doSampling_in_next_dim()

◆ doSampling_start_dimX()

void sgpp::datadriven::OperationDensitySamplingLinear::doSampling_start_dimX ( base::Grid g_in,
base::DataVector a_in,
size_t  dim_start,
base::DataVector *&  sampleVec,
unsigned int *  seedp 
)
protected

Member Data Documentation

◆ grid

base::Grid* sgpp::datadriven::OperationDensitySamplingLinear::grid
protected

Referenced by python.uq.dists.SGDEdist.SGDEdist::__str__(), python.learner.Learner.Learner::applyData(), python.tools.Matrix::ApplyMatrix(), python.uq.dists.SGDEdist.SGDEdist::cdf(), python.uq.learner.Interpolant.Interpolant::doLearningIteration(), python.learner.Learner.Learner::doLearningIteration(), doSampling(), doSampling(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.tools.Matrix::generateb(), python.controller.CheckpointController.CheckpointController::generateFoldValidationJob(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), python.learner.Learner.Learner::learnData(), python.learner.Learner.Learner::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.learner.Learner.Learner::learnDataWithTest(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.controller.CheckpointController.CheckpointController::loadAll(), python.uq.operations.forcePositivity.operationMakePositive.OperationMakePositive::makePositive(), python.uq.operations.forcePositivity.operationMakePositiveFast.OperationMakePositiveFast::makePositive(), python.uq.dists.SGDEdist.SGDEdist::mean(), python.uq.dists.SGDEdist.SGDEdist::pdf(), python.uq.dists.SGDEdist.SGDEdist::ppf(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.controller.CheckpointController.CheckpointController::saveGrid(), python.controller.CheckpointController.CheckpointController::setGrid(), python.learner.Learner.Learner::setGrid(), python.uq.learner.Learner.Learner::setGrid(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid::split(), python.uq.dists.SGDEdist.SGDEdist::toJson(), and python.uq.dists.SGDEdist.SGDEdist::var().


The documentation for this class was generated from the following files: