SG++-Doxygen-Documentation
Loading...
Searching...
No Matches
sgpp::datadriven::SparseGridMiner Class Referenceabstract

SparseGridMiner models the entire mining process for data mining with sparse grids. More...

#include <SparseGridMiner.hpp>

Inheritance diagram for sgpp::datadriven::SparseGridMiner:
sgpp::datadriven::SparseGridMinerCrossValidation sgpp::datadriven::SparseGridMinerSplitting sgpp::datadriven::SparseGridMinerSplittingTwoDatasets

Public Member Functions

ModelFittingBasegetModel ()
 Returns the trained model.
 
VisualizergetVisualizer ()
 
virtual double learn (bool verbose)=0
 Perform Learning cycle: Get samples from data source and based on the scoring procedure, generalize data by fitting and asses quality of the fit.
 
SparseGridMineroperator= (const SparseGridMiner &rhs)=delete
 Default copy assign operator deleted because not all members can be copied.
 
SparseGridMineroperator= (SparseGridMiner &&rhs)=default
 Default Move assign operator.
 
void setModel (ModelFittingBase *model)
 
 SparseGridMiner (const SparseGridMiner &rhs)=delete
 Copy constructor deleted - not all members can be copied or cloned .
 
 SparseGridMiner (ModelFittingBase *fitter, Scorer *scorer, Visualizer *visualizer)
 Constructor.
 
 SparseGridMiner (SparseGridMiner &&rhs)=default
 Default Move constructor .
 
double test (Dataset &testDataset)
 Evaluate the model on a certain test dataset.
 
virtual ~SparseGridMiner ()=default
 Default destructor.
 

Static Public Member Functions

static void print (const char *message)
 Print output on one process.
 
static void print (const std::string &message)
 Print output on one process.
 
static void print (std::ostringstream &messageStream)
 Print output on one process.
 

Protected Attributes

std::unique_ptr< ModelFittingBasefitter
 Fitter that trains a model based on data samples.
 
std::unique_ptr< Scorerscorer
 Scorer that quantifies the quality of a fit.
 
std::unique_ptr< Visualizervisualizer
 

Detailed Description

SparseGridMiner models the entire mining process for data mining with sparse grids.

It aggregates and automates data input, fitting and validation modules and controls the mining process.

Constructor & Destructor Documentation

◆ SparseGridMiner() [1/3]

sgpp::datadriven::SparseGridMiner::SparseGridMiner ( ModelFittingBase fitter,
Scorer scorer,
Visualizer visualizer 
)

Constructor.

Parameters
fitterconfigured instance of fitter object that generalize the model. The miner instance will take ownership of the passed object.
scorerconfigured instance of scorer object that will assess the quality of the generalization provided by the fitter on testing data. The miner instance will take ownership of the passed object.
visualizerconfigured instance of the visualizer object that will execute the visualization module of the model. The miner instance will take ownership of the passed object

◆ SparseGridMiner() [2/3]

sgpp::datadriven::SparseGridMiner::SparseGridMiner ( const SparseGridMiner rhs)
delete

Copy constructor deleted - not all members can be copied or cloned .

Parameters
rhsthe object to copy from

◆ SparseGridMiner() [3/3]

sgpp::datadriven::SparseGridMiner::SparseGridMiner ( SparseGridMiner &&  rhs)
default

Default Move constructor .

Parameters
rhsthe object to move from

◆ ~SparseGridMiner()

virtual sgpp::datadriven::SparseGridMiner::~SparseGridMiner ( )
virtualdefault

Default destructor.

Member Function Documentation

◆ getModel()

ModelFittingBase * sgpp::datadriven::SparseGridMiner::getModel ( )

Returns the trained model.

Returns
the trained model

◆ getVisualizer()

Visualizer * sgpp::datadriven::SparseGridMiner::getVisualizer ( )

◆ learn()

virtual double sgpp::datadriven::SparseGridMiner::learn ( bool  verbose)
pure virtual

Perform Learning cycle: Get samples from data source and based on the scoring procedure, generalize data by fitting and asses quality of the fit.

Implemented in sgpp::datadriven::SparseGridMinerCrossValidation, sgpp::datadriven::SparseGridMinerSplitting, and sgpp::datadriven::SparseGridMinerSplittingTwoDatasets.

◆ operator=() [1/2]

SparseGridMiner & sgpp::datadriven::SparseGridMiner::operator= ( const SparseGridMiner rhs)
delete

Default copy assign operator deleted because not all members can be copied.

Parameters
rhsthe object to copy from

◆ operator=() [2/2]

SparseGridMiner & sgpp::datadriven::SparseGridMiner::operator= ( SparseGridMiner &&  rhs)
default

Default Move assign operator.

Parameters
rhsthe object to move from

◆ print() [1/3]

void sgpp::datadriven::SparseGridMiner::print ( const char *  message)
static

Print output on one process.

Parameters
message

References print().

◆ print() [2/3]

void sgpp::datadriven::SparseGridMiner::print ( const std::string &  message)
static

◆ print() [3/3]

void sgpp::datadriven::SparseGridMiner::print ( std::ostringstream &  messageStream)
static

Print output on one process.

Parameters
messageStreamstream with the concatenated message

References print().

◆ setModel()

void sgpp::datadriven::SparseGridMiner::setModel ( ModelFittingBase model)

◆ test()

double sgpp::datadriven::SparseGridMiner::test ( Dataset testDataset)

Evaluate the model on a certain test dataset.

Parameters
testDatasetdataset used quantify accuracy using sgpp::datadriven::Metric.
Returns
score of the fit.

References fitter, and scorer.

Member Data Documentation

◆ fitter

◆ scorer

std::unique_ptr<Scorer> sgpp::datadriven::SparseGridMiner::scorer
protected

◆ visualizer

std::unique_ptr<Visualizer> sgpp::datadriven::SparseGridMiner::visualizer
protected

The documentation for this class was generated from the following files: