SG++-Doxygen-Documentation
Loading...
Searching...
No Matches
sgpp::datadriven::SparseGridMinerSplittingTwoDatasets Class Reference

SparseGridMinerSplittingTwoDatasets models a datamining process that involves two input datasets that are first split into validation and training data. More...

#include <SparseGridMinerSplittingTwoDatasets.hpp>

Inheritance diagram for sgpp::datadriven::SparseGridMinerSplittingTwoDatasets:
sgpp::datadriven::SparseGridMiner

Public Member Functions

double learn (bool verbose) override
 Perform Learning cycle: Get samples from data source and based on the scoring procedure, generalize data by fitting and asses quality of the fit.
 
SparseGridMinerSplittingTwoDatasetsoperator= (const SparseGridMinerSplittingTwoDatasets &rhs)=delete
 Default copy assign operator deleted - not all members can be copied.
 
SparseGridMinerSplittingTwoDatasetsoperator= (SparseGridMinerSplittingTwoDatasets &&rhs)=default
 Default Move assign operator.
 
 SparseGridMinerSplittingTwoDatasets (const SparseGridMinerSplittingTwoDatasets &rhs)=delete
 Copy constructor deleted - not all members can be copied or cloned.
 
 SparseGridMinerSplittingTwoDatasets (SparseGridMinerSplittingTwoDatasets &&rhs)=default
 Default Move constructor.
 
 SparseGridMinerSplittingTwoDatasets (std::vector< DataSourceSplitting * > dataSource, ModelFittingBase *fitter, Scorer *scorer, Visualizer *visualizer)
 Constructor.
 
 ~SparseGridMinerSplittingTwoDatasets () override=default
 Default destructor.
 
- Public Member Functions inherited from sgpp::datadriven::SparseGridMiner
ModelFittingBasegetModel ()
 Returns the trained model.
 
VisualizergetVisualizer ()
 
SparseGridMineroperator= (const SparseGridMiner &rhs)=delete
 Default copy assign operator deleted because not all members can be copied.
 
SparseGridMineroperator= (SparseGridMiner &&rhs)=default
 Default Move assign operator.
 
void setModel (ModelFittingBase *model)
 
 SparseGridMiner (const SparseGridMiner &rhs)=delete
 Copy constructor deleted - not all members can be copied or cloned .
 
 SparseGridMiner (ModelFittingBase *fitter, Scorer *scorer, Visualizer *visualizer)
 Constructor.
 
 SparseGridMiner (SparseGridMiner &&rhs)=default
 Default Move constructor .
 
double test (Dataset &testDataset)
 Evaluate the model on a certain test dataset.
 
virtual ~SparseGridMiner ()=default
 Default destructor.
 

Additional Inherited Members

- Static Public Member Functions inherited from sgpp::datadriven::SparseGridMiner
static void print (const char *message)
 Print output on one process.
 
static void print (const std::string &message)
 Print output on one process.
 
static void print (std::ostringstream &messageStream)
 Print output on one process.
 
- Protected Attributes inherited from sgpp::datadriven::SparseGridMiner
std::unique_ptr< ModelFittingBasefitter
 Fitter that trains a model based on data samples.
 
std::unique_ptr< Scorerscorer
 Scorer that quantifies the quality of a fit.
 
std::unique_ptr< Visualizervisualizer
 

Detailed Description

SparseGridMinerSplittingTwoDatasets models a datamining process that involves two input datasets that are first split into validation and training data.

The model is then trained on the training data for several epochs.

Constructor & Destructor Documentation

◆ SparseGridMinerSplittingTwoDatasets() [1/3]

sgpp::datadriven::SparseGridMinerSplittingTwoDatasets::SparseGridMinerSplittingTwoDatasets ( std::vector< DataSourceSplitting * >  dataSource,
ModelFittingBase fitter,
Scorer scorer,
Visualizer visualizer 
)

Constructor.

Parameters
dataSourcevector of configured instances of data source object, that will provide samples to learn from. The miner instance will take ownership of the passed object.
fitterconfigured instance of fitter object that generalize the model. The miner instance will take ownership of the passed object.
scorerconfigured instance of scorer object that will assess the quality of the generalization provided by the fitter on testing data. The miner instance will take ownership of the passed object.
visualizerconfigured instance of viusalizer object that will produce the output to visualize the model and its results

◆ SparseGridMinerSplittingTwoDatasets() [2/3]

sgpp::datadriven::SparseGridMinerSplittingTwoDatasets::SparseGridMinerSplittingTwoDatasets ( const SparseGridMinerSplittingTwoDatasets rhs)
delete

Copy constructor deleted - not all members can be copied or cloned.

Parameters
rhsthe object to copy from

◆ SparseGridMinerSplittingTwoDatasets() [3/3]

sgpp::datadriven::SparseGridMinerSplittingTwoDatasets::SparseGridMinerSplittingTwoDatasets ( SparseGridMinerSplittingTwoDatasets &&  rhs)
default

Default Move constructor.

Parameters
rhsthe object to move from

◆ ~SparseGridMinerSplittingTwoDatasets()

sgpp::datadriven::SparseGridMinerSplittingTwoDatasets::~SparseGridMinerSplittingTwoDatasets ( )
overridedefault

Default destructor.

Member Function Documentation

◆ learn()

double sgpp::datadriven::SparseGridMinerSplittingTwoDatasets::learn ( bool  verbose)
overridevirtual

Perform Learning cycle: Get samples from data source and based on the scoring procedure, generalize data by fitting and asses quality of the fit.

The learning process first divides the data into training and validation data and trains the model for several epochs on the training data.

Implements sgpp::datadriven::SparseGridMiner.

References sgpp::datadriven::RefinementMonitorFactory::createRefinementMonitor(), sgpp::datadriven::SparseGridMiner::fitter, sgpp::datadriven::RefinementMonitor::pushToBuffer(), sgpp::datadriven::RefinementMonitor::refinementsNecessary(), and sgpp::datadriven::SparseGridMiner::scorer.

◆ operator=() [1/2]

SparseGridMinerSplittingTwoDatasets & sgpp::datadriven::SparseGridMinerSplittingTwoDatasets::operator= ( const SparseGridMinerSplittingTwoDatasets rhs)
delete

Default copy assign operator deleted - not all members can be copied.

Parameters
rhsthe object to copy from

◆ operator=() [2/2]

SparseGridMinerSplittingTwoDatasets & sgpp::datadriven::SparseGridMinerSplittingTwoDatasets::operator= ( SparseGridMinerSplittingTwoDatasets &&  rhs)
default

Default Move assign operator.

Parameters
rhsthe object to move from

The documentation for this class was generated from the following files: