This class implements standard sparse grid regression with an Identity matrix as regularization operator.
More...
|
std::vector< std::pair< size_t, double > > | getRefinementExecTimes () |
|
| LearnerLeastSquaresIdentity (const bool isRegression, const bool isVerbose=true) |
| Constructor.
|
|
void | multTranspose (sgpp::base::DataMatrix &dataset, sgpp::base::DataVector &multiplier, sgpp::base::DataVector &result) override |
|
virtual void | predict (sgpp::base::DataMatrix &testDataset, sgpp::base::DataVector &classesComputed) |
| executes a Regression test for a given dataset and returns the result
|
|
void | predict (sgpp::base::DataMatrix &testDataset, sgpp::base::DataVector &classesComputed) override |
| executes a Regression test for a given dataset and returns the result
|
|
void | setImplementation (sgpp::datadriven::OperationMultipleEvalConfiguration operationConfiguration) |
|
double | testRegular (const sgpp::base::RegularGridConfiguration &gridConfig, sgpp::base::DataMatrix &testDataset) |
|
| ~LearnerLeastSquaresIdentity () override |
| Destructor.
|
|
void | dumpFunction (std::string tFilename, size_t resolution) |
| simple dump of sparse grid function into file, e.g.
|
|
void | dumpGrid (std::string tFilename) |
| simple dump of grid points into file, e.g.
|
|
virtual double | getAccuracy (const sgpp::base::DataVector &classesComputed, const sgpp::base::DataVector &classesReference, const double threshold=0.0) |
| compute the accuracy for given testDataset.
|
|
virtual double | getAccuracy (sgpp::base::DataMatrix &testDataset, const sgpp::base::DataVector &classesReference, const double threshold=0.0) |
| compute the accuracy for given testDataset.
|
|
sgpp::base::DataVector & | getAlpha () |
|
virtual ClassificatorQuality | getCassificatorQuality (const sgpp::base::DataVector &classesComputed, const sgpp::base::DataVector &classesReference, const double threshold=0.0) |
| compute the quality for given testDataset, classification ONLY!
|
|
virtual ClassificatorQuality | getCassificatorQuality (sgpp::base::DataMatrix &testDataset, const sgpp::base::DataVector &classesReference, const double threshold=0.0) |
| compute the quality for given testDataset, classification ONLY! test is automatically called in order to determine the regression values of the current learner
|
|
sgpp::base::Grid & | getGrid () |
|
bool | getIsRegression () const |
| determines the current mode
|
|
bool | getIsVerbose () const |
| determines the current verbose mode of learner
|
|
std::vector< std::pair< size_t, double > > | getRefinementExecTimes () |
|
| LearnerBase (const bool isRegression, const bool isVerbose=true) |
| Constructor.
|
|
| LearnerBase (const LearnerBase ©Me) |
| Copy-Constructor.
|
|
void | setIsVerbose (const bool isVerbose) |
| sets the current verbose mode of learner
|
|
void | setReuseCoefficients (bool reuseCoefficients) |
|
void | setSolverVerbose (bool solverVerbose) |
|
void | store (std::string tGridFilename, std::string tAlphaFilename) |
| store the grid and its current coefficients into files for further usage.
|
|
LearnerTiming | train (sgpp::base::DataMatrix &trainDataset, sgpp::base::DataVector &classes, const sgpp::base::RegularGridConfiguration &gridConfig, const sgpp::solver::SLESolverConfiguration &SolverConfig, const double lambdaRegularization) |
| Learning a dataset with regular sparse grids.
|
|
virtual LearnerTiming | train (sgpp::base::DataMatrix &trainDataset, sgpp::base::DataVector &classes, const sgpp::base::RegularGridConfiguration &gridConfig, const sgpp::solver::SLESolverConfiguration &SolverConfigRefine, const sgpp::solver::SLESolverConfiguration &SolverConfigFinal, const sgpp::base::AdaptivityConfiguration &adaptivityConfig, bool testAccDuringAdapt, const double lambdaRegularization, sgpp::base::DataMatrix *testDataset=nullptr, sgpp::base::DataVector *testClasses=nullptr) |
| Learning a dataset with spatially adaptive sparse grids.
|
|
virtual | ~LearnerBase () |
| Destructor.
|
|
|
std::unique_ptr< sgpp::base::DataVector > | alpha |
| the grid's coefficients
|
|
size_t | currentRefinementStep |
| the current refinment step during training
|
|
double | execTime |
| execution time
|
|
std::vector< std::pair< size_t, double > > | ExecTimeOnStep |
|
double | GByte |
| number of transferred Gbytes
|
|
double | GFlop |
| number of executed Floating Point operations
|
|
std::unique_ptr< sgpp::base::Grid > | grid |
| sparse grid object
|
|
bool | isRegression |
| is regression selected
|
|
bool | isTrained |
| is the grid trained
|
|
bool | isVerbose |
| is verbose output enabled
|
|
bool | reuseCoefficients |
| shall the coefficients be reused between refinement steps
|
|
bool | solverVerbose |
| sets the verbose option for the solver
|
|
double | stepExecTime |
| execution time for current refinement to calculate the GFlops at the current timestep only otherwise accumulated GFlops (all refinement steps) are calculated
|
|
double | stepGByte |
| number of transferred Gbytes in the current refinement step
|
|
double | stepGFlop |
| number of executed Floating Point operations in the current refinement step
|
|
This class implements standard sparse grid regression with an Identity matrix as regularization operator.
Furthermore this Learner provides support for several vectorization approaches covering GPUs, CPUs and coprocessors.