![]() |
SG++-Doxygen-Documentation
|
Sparse grid interpolant of a scalar-valued function. More...
#include <ASInterpolantScalarFunction.hpp>
Public Member Functions | |
ASInterpolantScalarFunction (base::Grid &grid, const base::DataVector &alpha) | |
Constructor. | |
void | clone (std::unique_ptr< base::ScalarFunction > &clone) const override |
double | eval (const base::DataVector &x) override |
Evaluation of the function. | |
const base::DataVector & | getAlpha () const |
size_t | getSize () |
void | setAlpha (const base::DataVector &alpha) |
~ASInterpolantScalarFunction () override | |
Destructor. | |
![]() | |
virtual void | eval (const DataMatrix &x, DataVector &value) |
Convenience method for calculating \(f(\vec{x})\) for multiple \(\vec{x}\). | |
size_t | getNumberOfParameters () const |
ScalarFunction (size_t d) | |
Constructor. | |
virtual | ~ScalarFunction () |
Destructor. | |
Protected Attributes | |
base::DataVector | alpha |
coefficient vector | |
base::Grid & | grid |
sparse grid | |
std::unique_ptr< base::OperationEval > | opEval |
pointer to evaluation operation | |
![]() | |
size_t | d |
dimension of the domain | |
Sparse grid interpolant of a scalar-valued function.
Special case for active subspace response surfaces which is defined on mathbb{R}^d and not only [0,1]^d
More generally, the function can be any linear combination $f colon mathbb{R}^d to mathbb{R}$, $f(vec{x}) = sum_{k=1}^N alpha_k varphi_k(vec{x})$ of the basis functions $varphi_k = varphi_{vec{ell}_k,vec{i}_k}$ of a sparse grid with grid points $vec{x}_k = vec{x}_{vec{ell}_k,vec{i}_k}$. But most often, the function (e.g., its coefficients) is constructed as an interpolant at the grid points for some function values.
|
inline |
Constructor.
Do not destruct the grid before the ASInterpolantScalarFunction object!
grid | sparse grid |
alpha | coefficient vector |
|
inlineoverride |
Destructor.
|
inlineoverridevirtual |
[out] | clone | pointer to cloned object |
Implements sgpp::base::ScalarFunction.
References alpha, clone(), and grid.
Referenced by clone().
|
inlineoverridevirtual |
Evaluation of the function.
x | evaluation point $vec{x} in mathbb{R}^d$ |
Implements sgpp::base::ScalarFunction.
Referenced by python.uq.analysis.asgc.ASGCAnalysis.ASGCAnalysis::estimateDensity().
|
inline |
References alpha.
Referenced by python.uq.analysis.asgc.ASGCKnowledge.ASGCKnowledge::getSparseGridFunction().
|
inline |
References sgpp::base::Grid::getSize(), and grid.
Referenced by python.uq.uq_setting.UQSetting.UQSetting::convert(), python.uq.uq_setting.UQSetting.UQSetting::getTimeDependentResults(), python.uq.uq_setting.UQSetting.UQSetting::runSamples(), and python.uq.uq_setting.UQSetting.UQSetting::runSamples_withoutDistribution().
|
inline |
alpha | coefficient vector |
References alpha.
|
protected |
coefficient vector
Referenced by clone(), python.learner.Learner.Learner::doLearningIteration(), eval(), getAlpha(), python.learner.Learner.Learner::learnData(), python.learner.Learner.Learner::learnDataWithTest(), python.uq.learner.Interpolant.Interpolant::learnDataWithTest(), python.uq.dists.SGDEdist.SGDEdist::pdf(), setAlpha(), and python.uq.dists.SGDEdist.SGDEdist::toJson().
|
protected |
sparse grid
Referenced by python.uq.dists.SGDEdist.SGDEdist::__str__(), python.learner.Learner.Learner::applyData(), python.tools.Matrix::ApplyMatrix(), python.uq.dists.SGDEdist.SGDEdist::cdf(), clone(), python.uq.learner.Interpolant.Interpolant::doLearningIteration(), python.learner.Learner.Learner::doLearningIteration(), python.learner.Classifier.Classifier::evalError(), python.uq.learner.Interpolant.Interpolant::evalError(), python.tools.Matrix::generateb(), python.controller.CheckpointController.CheckpointController::generateFoldValidationJob(), python.uq.learner.SimulationLearner.SimulationLearner::getCollocationNodes(), python.uq.learner.SimulationLearner.SimulationLearner::getGrid(), python.uq.learner.SimulationLearner.SimulationLearner::getLearner(), getSize(), python.learner.Learner.Learner::learnData(), python.learner.Learner.Learner::learnDataWithFolding(), python.uq.learner.Regressor.Regressor::learnDataWithFolding(), python.learner.Learner.Learner::learnDataWithTest(), python.uq.learner.Regressor.Regressor::learnDataWithTest(), python.controller.CheckpointController.CheckpointController::loadAll(), python.uq.operations.forcePositivity.operationMakePositive.OperationMakePositive::makePositive(), python.uq.operations.forcePositivity.operationMakePositiveFast.OperationMakePositiveFast::makePositive(), python.uq.dists.SGDEdist.SGDEdist::mean(), python.uq.dists.SGDEdist.SGDEdist::pdf(), python.uq.dists.SGDEdist.SGDEdist::ppf(), python.learner.Classifier.Classifier::refineGrid(), python.learner.Regressor.Regressor::refineGrid(), python.uq.learner.Regressor.Regressor::refineGrid(), python.uq.learner.SimulationLearner.SimulationLearner::refineGrid(), python.controller.CheckpointController.CheckpointController::saveGrid(), python.controller.CheckpointController.CheckpointController::setGrid(), python.learner.Learner.Learner::setGrid(), python.uq.learner.Learner.Learner::setGrid(), python.uq.operations.forcePositivity.localFullGridSearch.LocalFullGrid::split(), python.uq.dists.SGDEdist.SGDEdist::toJson(), and python.uq.dists.SGDEdist.SGDEdist::var().
|
protected |
pointer to evaluation operation
Referenced by eval().